
INSTITUTO TECNOLÓGICO Y DE ESTUDIOS SUPERIORES DE MONTERREY

A clustering genetic algorithm for inferring protein-protein
functional interaction sites

THESIS PRESENTED TO OPT FOR THE DEGREE OF
MASTER OF SCIENCE IN COMPUTER SCIENCE

BY

JOSÉ JUAN TAPIA VALENZUELA

Advisor: DR. EDGAR EMMANUEL VALLEJO CLEMENTE
Co-Advisor: DR. JUAN ENRIQUE MORETT SÁNCHEZ

Thesis comitee: DR. CARLOS ARTEMIO COELLO COELLO
DR. MIGUEL GONZÁLEZ MENDOZA

Referees: DR. JUAN ENRIQUE MORETT SÁNCHEZ President
DR. MIGUEL GONZÁLEZ MENDOZA Secretary
DR. EDGAR EMMANUEL VALLEJO CLEMENTE Vocal
DR. CARLOS ARTEMIO COELLO COELLO Vocal

Atizapán de Zaragoza, Edo. Mex., Mexico, July 2009

ABSTRACT

In the thesis we present a technique for clustering different proteins into groups that would help
biologist to infer significant protein-protein functional interactions. The approach that will be used
is the Genetic Algorithms, incorporating techniques such as clustering and parallelization.

We first approach this interaction prediction challenge as an optimization problem, in specific
using phylogenetic profiles and treating the formation of clusters based around these profiles as
an optimization problem. First results demonstrate that this approach produces results that are
competitive with respect to classical clustering approaches.

In the expanded version, we propose the formulation of the protein-protein functional interac-
tions prediction as a multi-objective optimization problem. In this view, clustering is conducted
by considering multiple objectives associated to different genomic attributes. Although previous
authors have proposed the use of Multi-objective clustering algorithms to mine biological data, it
has only been used as a means to increase the clustering capabilities of the algorithm, and never
to be able to introduce new biological data into the process. As such, we propose the use of the
Multiple Objective Clustering Evolutionary Algorithm as a means to combine the competent clus-
tering capabilities over irregular landscapes that Genetic Algorithms possess, and consider various
sources of genomic data as a multi-objective problem.

Particularly, in this work we conducted a series of experiments with three different attributes:
phylogenetic profiles, gene directionality and intergenetic distance. We used genomic data pro-
vided by the COG and GeCont databases, among others.

Experimental results demonstrated that our method is capable of producing competitive results
as validated by experimentally confirmed databases on functional interactions between proteins
such as DIP and ECOCYC. The proposed method shows that different genomic attributes can
be used simultaneously to increase biological significance in the reconstruction of protein-protein
functional interactions.

CONTENTS

1 Introduction 8
1.1 Motivation . 10
1.2 Problem statement . 11
1.3 Hypothesis . 11
1.4 Thesis objectives . 11
1.5 Thesis organization . 12

2 Background 13
2.1 Biological context . 13
2.2 The importance of proteins . 13

2.2.1 Protein-protein interactions . 14
2.2.2 Biochemistry methods to determine protein-protein interactions 15
2.2.3 Prediction of functional protein-protein interactions 16
2.2.4 Genomic context . 16
2.2.5 Phylogenetic profiles . 17
2.2.6 Other in silico methods for detecting protein-protein interactions 18

2.3 Computational context . 18
2.3.1 Simple Genetic Algorithms . 18
2.3.2 The grouping genetic algorithm . 19
2.3.3 Multi-objective genetic algorithms . 19
2.3.4 Using genetic algorithms as a clustering method in Bioinformatics 23

2.4 K-means . 24

3 Proposed model 25
3.1 The input data . 25

3.1.1 The COG Database . 25
3.1.2 The GeCont Database . 27
3.1.3 Other databases . 27

3.2 Preparing the databases . 28
3.2.1 The COG database . 28
3.2.2 The GeCont database . 29
3.2.3 The DIP and Ecocyc databases . 30
3.2.4 The E. Coli operon database . 30

3.3 The grouping genetic algorithm . 32
3.3.1 Basic Structures . 33
3.3.2 Genetic Operators . 33
3.3.3 Using a single evaluation function . 36
3.3.4 Selection operators . 37
3.3.5 Improving the algorithm performance . 38
3.3.6 Integrating the algorithm . 38

3.4 Results Using a single objective evaluation function 39
3.4.1 Number of groups . 39

3.4.2 Running time . 40
3.4.3 Validation of results . 40

3.5 Early Results Discussion . 43
3.6 Introducing multi objective fitness evaluation functions 44

3.6.1 Phylogenetic profiles . 44
3.6.2 Transcriptional directionality . 45
3.6.3 Intergenic distance . 45
3.6.4 Cluster size . 45

3.7 Implementation of the evaluation function . 46

4 Final results 48
4.1 Formation of the Pareto front . 48

4.1.1 Statistical analysis on the pareto front . 48
4.2 Execution time . 51
4.3 Arranging our algorithm . 51
4.4 Validation of results . 51

5 Conclusions 53
5.1 Future work . 55

5.1.1 Other computational improvements . 56
5.2 Biological future work . 56

LIST OF FIGURES

2.1 Central dogma of Molecular Biology . 14
2.2 Co-immune precipitation . 15
2.3 Interacting proteins are near each other, and transcribe in the same direction 17
2.4 Example of a Pareto front. The yellow region represents the feasible area. The red

line represents the pareto front. The blue points represent the current population . . 21
2.5 Example of an unevenly distributed Pareto front 22

3.1 The lac operon . 28
3.2 Structure of a population . 33
3.3 Behavior of the fitness functions using crossover and mutation 34
3.4 Behavior of the fitness functions using mutation only 35
3.5 Example of how the MergeStrong operator works 35
3.6 Example of how the rehashWeak operator works 35
3.7 Example of how the weeding operator works 36
3.8 Average run of the GGA engine . 39

4.1 Initial random distribution of the population . 49
4.2 Pareto Front formation. The curve is bended towards the viewer 49
4.3 Raw superposition of a subset of our runs of the algorithm 49
4.4 Phylogenetic profiles vs transcription directionality 50
4.5 Intergenic distance vs phylogenetic profiles . 50
4.6 Intergenic distance vs transcription directionality 50

LIST OF TABLES

2.1 Example of phylogenetic profiles . 17

3.1 Genomes represented in COG database (part I) 26
3.2 Genomes represented in COG database(part II) 27
3.3 Example of an entry of the COG database. 29
3.4 Example of an entry of the GeCont database. Some fields are ommited 29
3.5 The context table entity relationship model . 30
3.6 The Gecont-COG table ER model . 30
3.7 The context table entity relationship model . 31
3.8 An example of the DIP table . 31
3.9 Example of early clustering genetic algorithms 31
3.10 Example of early clustering genetic algorithms 32
3.11 Example of a phylogenetic profile centroid . 37
3.12 Percentage of correct EcoCYC/DIP group assignations 40
3.13 Excerpt from the GGA group where the purEK pair is located 41
3.14 Excerpts from the k-means group were the purEK disjointed pairs were located . . 42
3.15 Excerpt from the GGA group where the Leu and SpeED operon pair are located . . 42
3.16 Exerpt from the GGA group where the hflA operon pair is located 43
3.17 Example of a context array field from an hypothetical COG 45
3.18 Example field of the context 3 dimensional array 46

4.1 Results chart . 52
4.2 Excerpt from the group where the DNA biosynthesis operon is located 52

1 Input Texture . 62
2 Output Texture . 62
3 Time comparison . 63

LIST OF ALGORITHMS

1 k-means . 24
2 Evaluation function for the single objective genetic algorithm 37
3 Overview of the complete algorithm . 38
4 Algorithm for the creation of a new population 47
5 Kernel for the computation of a distance matrix 61
6 Kernel for obtaining the distance values . 63

1. INTRODUCTION

At its very core, every living being on this planet can be represented as an encoded piece of data
known as a genome. It is through the expression of this genome that every single biological process
operates. When a genome is expressed, it is eventually transformed into the proteome, or the
collection of proteins and protein machines that make up as species. While the genome is the
footprint that identifies a species, the proteins are the workers through which all the biological
process take place, such as DNA replication, transcription and translation itself, splicing, secretion,
cell cycle control, etc. It is through the stacking of all the protein processes within a system, or
through the multitude of protein-protein interactions that higher level biological systems can be
created.

As such, the analysis of the building blocks of Biology is fundamental in our endeavor to
increase our biological knowledge. Recent years have seen a tremendous increase in the amount
of genomic and proteomic data we have at our disposal. Since the discovery of the genome of the
bacteriophage MS2 in 1976 by Fiers [1], passing through the discovery of the genome of the first
free-living organism, the Haemophilus influenzae in 1995[2], and that of the Human Genome in
2003, we now have millions of bytes of data to use in the various endeavors biology is engaged in.

However, merely possessing this large amount of data, while highly convenient, is not actually
useful by itself. We must be able to extract valuable information from this raw data, information
that will allow us to discover new knowledge, be it the epidemiology of a certain disease, the root
of certain hereditary condition and others.

Biologists around the world have made a lot of economic and scientific investment into dis-
covering and extracting this kind of characteristics from raw data. Experimental methods such as
co-immune precipitation, or microarrays have allowed us to extract much information that tells us
about the different properties that protein, and protein-protein complexes have.

However, despite our best efforts there is still a big number of poorly characterized proteins,

8

9

that is, proteins whose function has not been clearly recognized. However, there is a strong eco-
nomic cost involved in this type of in vivo experiments, that makes exhaustive experiments unfea-
sible.

Because of this, the development of computational methods for determining functional relation-
ships between proteins from sequence and genomic data has becoming an increasingly important
area of research in bioinformatics and computational biology. In effect, revealing unknown protein
interactions in functional pathways and perhaps, their association with disease relies crucially on
sound computational algorithms capable of producing meaningful predictions.

A collection of robust computational approaches for reconstructing functional modules of pro-
teins have been developed in recent years [3]. These methods rely crucially on genomic attributes
such as gene co-expression, gene co-occurrence, genes proximity, gene directionality, gene fusion,
among others [4]. All of these data attributes have been extracted from complete genomes of dif-
ferent species, so they have been available only since recent years. This very large data corpus
possesses a vast amount of informative implicit relationships waiting to be discovered by compu-
tational techniques.

Among these modern post-genomic computational approaches, phylogenetic profiles –the cor-
related presence and absence of genes among a collection of organisms, have proven to be partic-
ularly effective [5, 6]. Theoretically, with the increasing availability of complete genomes from
more organisms, this method holds the promise of increasing efficiency. Particularly, phyloge-
netic profiles have been used for assigning protein function, for localizing proteins in cells, and for
reconstructing metabolic pathways, among other applications.

The efficacy of predictions obtained from phylogenetic profiles depends critically on its clus-
ter analysis stage –the grouping of proteins with similar phylogenetic patterns. Most clustering
algorithms used in phylogenetic profiles to date often require a priori information on clustering
parameters. Namely, the number of clusters and the initial positions of centers, among others,
although there are a few exceptions. Further, the absence of negative examples in testing data
sets allows for the presence of false positives that need to be discarded experimentally, which is
extremely expensive in practice.

Different clustering algorithms have been previously used with phylogenetic profiles. Several
approaches can be identified in the literature. Previous work in our laboratory obtained promising
results by identifying transitive functional relationships, then analyzing these features in order to
detect functional modules of proteins using the Bond Energy Algorithm[7]. Fuzzy C-means has
also been used for extending the coverage of predictions to include pairs of interacting proteins
with relatively dissimilar phylogenetic profiles [8].

We have found as more promising to develop clustering methods based on genetic algorithms.
In previous experiments, clustering genetic algorithms have yielded competitive results on detect-
ing protein-protein functional interactions[9]. Furthermore, they have proved capable of evolving
appropriate clustering parameters which eliminates the need for a priori empirical specification
and tuning. We believe the latter represents an important advance in the practice of cluster analysis
in general.

In addition, even though the predictions provided by most of the post-genomic approaches

10

have proven to be useful, the integration of different genomic attributes within a general purpose,
comprehensive algorithms have remained elusive. The exception has been the a posteriori additive
integration of the results provided by different methods [10].

This combination and integration approach of all the information we have at our disposal is
of extreme importance, because of two main factors. First, the information we receive is often
incomplete, and second, many times there is a lot of noise in our experimental data, so the infor-
mation ends up being contradictory. As such, we need methods that are able to take in this fuzzy
information that is the product of vastly different methods and combine them into a single data
mining algorithm.

All in all, a multi-objective approach to protein-protein functional prediction would be highly
convenient in our endeavors to encompass all the biological information at our disposal from a
computational point of view. Not only that, but an effective method that allows us to combine
all those methods without losing information in the process, but on the contrary, to sinergically
build upon combined to discoveries in order to discover new data is the only way to go. As such,
we propose MOCEA (Multi Objective Clustering Evolutionary Algorithm for inferring functional
protein-protein interactions), a framework we have developed, whose structure and functionality
we will explain in the next chapters.

1.1 MOTIVATION

It is known that a living being is formed primarily by five components, those being nucleic acids,
lipids, water, carbohydrates and proteins.[11] All of these are highly important and have their own
function, however it is the proteins that most define the character of a cell since they are involved
in every process within it. They may be enzymes that catalyze biochemical reactions, or have
structural or mechanical functions. Cell signaling, cell adhesion, immune responses, their multiple
functions are vast. Their full understanding would be of importance not only in the theoretical
understanding of our ecosystems, but also in discovering new ways of fighting diseases, genetic
disorders and other problems that affect our human species.

However, up to this day the full understanding of the whole range of functions all of the pro-
teome still remains as a long term goal. Proteomics, which is the branch of the biology that dedi-
cates to the research of the structure and expression of proteins, is still an area in its early stages.
We know that depending on a proteins structure, patterns of co appearance between proteins among
different species, directionality of the RNA transcription and other factors we can draw important
conclusions that could be crucial in furthering our understanding of the proteome. However, to this
day discoveries have been scarce.

There is a large range of methodologies and algorithms, both in its in vivo and in vitro incarna-
tions that have been developed to infer these interactions. However, there has been little work on
approaches that compile all this information in a single algorithm in order to add the advantages
and cover for the disadvantages for each of these methods

11

1.2 PROBLEM STATEMENT

There exist a necessity to predict protein-protein interactions from Biological data using in silico
methods. Furthermore it should be ideal to create a way to predict this interaction networks using
information from varied sources, a method that is resistant to incomplete, and often contradictory
information, and that yet allows all information to be combined into a single searching algorithm,
and correctly use the data to predict the information we are interested in.

1.3 HYPOTHESIS

We first propose that the problem of the discovery of functional protein-protein interactions can
be treated as an optimization problem, and as such it can be solved through the use of genetic
algorithms. Secondly, we hypothesize that there must be a structured way to not only combine
into a single scheme different protein-protein functional prediction methods, but to integrate them
into a single searching method that combines each different algorithm individual prowess into a
single optimization function. For this, we propose the use of multi-objective genetic algorithms in
order to combine the different fitness function that we developed for the first part of the thesis. The
result must be an algorithm whose discovery capability is more than that resulting from simply the
optimization of overlapping each different method results.

1.4 THESIS OBJECTIVES

The main objective of this thesis is to provide a robust algorithm capable of correctly identifying
clusters of proteins which have a functional interrelationship. We understand as functional intere-
lationship a process which requires the participation of a group of many proteins to be completed,
and that is extended among a set of species.

In order to extract these characteristics we need to use a computational model that will allow
us to do so with a high level of flexibility in being able to easily incorporate very different types
of genomic data into a search algorithm in order to increase the reliability and significance of our
results. Our proposed solution is a genetic algorithm, in specific a variant based on the Grouping
Genetic Algorithms (GGA) introduced by Emmanuel Falkenaeur [12]. Falkenaeur proposed a vari-
ant of classic genetic algorithms where the gene structure was optimized for clustering purposes,
however Falkenaeur’s main application was the optimization of production lines.

We applied a first version using phylogenetic profiles and clustering genetic algorithms that
rivaled the results of simple clustering methods, however it failed the encompass information rele-
vant to protein-protein interactions other than phylogenetic profiles, and overall this version of the
algorithm, had the tendency to create groups that were too big to be realistic.

Our proposed revision expands on the original by introducing and redefining operators specific
for our problem, expanding the landscape so that it is transformed into a multi-objective optimiza-
tion environment (using phylogenetic profiles, transcription directionality, etc.).

12

Our results with this expanded version improve significantly over the original, single objective
algorithm. Experimental results show that progressively including more and more biological data
has a definite impact on the quantity of biological information discovered, not to mention that
because of how multi objective genetic algorithms are structured, it allows a higher degree of
freedom in terms of selecting what parameter has a certain degree of priority over others.

1.5 THESIS ORGANIZATION

This thesis is organized as follows. In Chapter 2 we will provide a brief theoretical context of
the biological and computational terms and topics we will be working on. Then, in chapter 3, our
proposed solutions based on parallel grouping genetic algorithms are described. On chapter 4 we
will present the results we obtained through the application of our proposed model. Finally, on
chapter 5, the future work of this thesis is described and discussed.

2. BACKGROUND

2.1 BIOLOGICAL CONTEXT

Throughtout this section we will shed light on some of the most important Biology principles that
will be used in this thesis. The full understanding of these terms will be crucial in understanding
not only the concepts we used and applied during our experiments, but also on the importance they
have on the grander scheme of Genomics, and thus the importance of this thesis for the area, thus
careful reading of this chapter is of utmost importance.

2.2 THE IMPORTANCE OF PROTEINS

The central dogma of biology states (in simplified terms) that within a cell, its DNA will be tran-
scripted to mRNA, that this RNA will find its way to the ribosome, and be translated to a protein
to perform a certain function. Once proteins are created they will start performing various func-
tions, like being enzymes and catalyzing biochemical reactions, or providing cell signaling, or even
being part of the structure of a cell. Many proteins create more complex structures among them-
selves that allow them to perform higher level structures, which eventually leads to the formation
of living cells and higher level organisms. We can see a graphical representation of this dogma in
Fig. 2.1. This thesis work will entirely focus on the protein machine state, more specifically in the
interactions resulting from the combination of various proteins.

1Image created by Daniel Horspool

13

14

Figure 2.1: Central dogma of Molecular Biology
1

2.2.1 PROTEIN-PROTEIN INTERACTIONS

Protein-protein interactions refer to the association of protein molecules and the study of these
associations from the perspective of biochemistry, signal transduction and networks.

The interactions between proteins are important for many biological functions. For example,
signals from the exterior of a cell are mediated to the inside of that cell by protein-protein interac-
tions of the signaling molecules. This process, called signal transduction, plays a fundamental role
in many biological processes and in many diseases (e.g. cancer). Proteins might interact for a long
time to form part of a protein complex, a protein may be carrying another protein (for example,
from cytoplasm to nucleus or vice-versa in the case of the nuclear pore importins), or a protein
may interact briefly with another protein just to modify it (for example, a protein kinase will add
a phosphate to a target protein). This modification of proteins can itself change protein-protein
interactions. For example, some proteins with SH2 domains only bind to other proteins when they
are phosphorylated on the amino acid tyrosine. All in all, protein-protein interactions are of cen-
tral importance for virtually every process in a living cell. Information about these interactions
improves our understanding of diseases and can provide the basis for new therapeutic approaches.

15

Figure 2.2: Co-immune precipitation
2

2.2.2 BIOCHEMISTRY METHODS TO DETERMINE PROTEIN-PROTEIN INTERAC-
TIONS

There is a great variety of methods in the field of biochemistry that have been used to discover
these types of interactions, each with their own asset of strengths and drawbacks.

One of the most known is that of Co-immune precipitation[13]. Normal immune precipitation
works, like its name describes by using an antibody that specifically binds to a protein that interests
us, and helps us to precipitate the antigen of that protein, and thus isolates that protein from a larger
group. Similarly, co-immune precipitation follows the same principle, but in this case we are
targeting a protein that is believed to be a part of a complex of proteins. In other words, that is part
of a larger interaction process, such that when it is precipitated it will carry the whole molecular
machine with it. A graphical representation of how this works can be seen in Figure 2.2

All of this are some of the many Biological methods that exist to determine our topic of interest,
that is protein-protein interactions. However, as we can see, most of them are built up over the idea
that we have a hypothesis of what a possible protein complex would be, and the Biological methods
help us to determine the validity of that hypothesis. Obviously, going by mere trial and error is not
only extremely time and resource consuming, but extremely prohibitive in terms of the financial
resources that need to be invested in each experimental iteration. That is why there has been recent
interest from people in different research areas to come up with a set of methods that serve as a
guideline, or as a more formal compass of interesting research areas where the methods that we
have explained in this section can be applied.

2Image created by Daniel Horspool

16

2.2.3 PREDICTION OF FUNCTIONAL PROTEIN-PROTEIN INTERACTIONS

The prediction of these interactions has been aided with several areas from the knowledge dis-
covery area of computer science, such as data mining, clustering, graph theory and the such.
Functional interaction prediction combines the knowledge from fields such as bioinformatics and
structural biology in order to determine, identify and catalogue interactions between protein com-
plexes, or even the existence of these complexes themselves. More than a replacement, in silico
experimentation is a field that serves as a compass and a complement to in vitro experimentation.

2.2.4 GENOMIC CONTEXT

Introduction

Understanding the context into which a certain gene that encodes a protein of interest is located is
of crucial importance when inferring protein-protein interactions through computational methods
[14]

Distance between species

When we compare genetic or proteomic data between any two species, it is important to consider
the genetic distance and evolutionary history between them. By this, we mean that similar sections
in dissimilar species are more meaningful from an evolution point of view than similar sections
in closely related species. This is because the genome of these species hasn’t suffered as much
evochanges as those of other species, and similar sections between the genomes could merely be
some kind of coincidence. In contrast, species that belong to different genus, or even different
families tend to vary in large portion of their genome. However different analysis show that there
are sections that are conserved almost verbatim between these species. Moreover, many of these
sections have been found to encode protein that perform vital functions in the organism, genes
that are so crucial that not even millions of years of divergent evolutionary history have been
able to purge. From this stems that if a set of proteins remain present in a vast array of species,
the possibilities that there is an underlying reason behind that are high. Most likely a functional
interaction.

Direction and adjacency of transcription

According to Biology’s central dogma, when the DNA is transcripted to mRNA it searches for
the specific region that will be converted, and does it in a single direction by searching for a
START and TERMINATE signal molecules. As such, it is the case that when a protein pathway
function is to be performed normally we have that the protein belonging to this pathway will be
transcripted in the same direction, and they most probably will be located close to each other.
Many evolutionary proven protein-protein interactions, like the purEK operon shown in Fig. 2.3

17

Figure 2.3: Interacting proteins are near each other, and transcribe in the same direction

Table 2.1: Example of phylogenetic profiles

Protein g1 g2 g3 g4 g5

p1 1 1 0 1 1
p2 1 1 1 0 1
p3 1 0 1 1 1
p4 1 1 0 0 0
p5 1 1 1 1 1
p6 1 0 1 1 1
p7 1 1 1 0 1
p8 1 0 0 1 1

show that this assumption is consistent with reality, and as such is a sufficiently strong method to
predict protein-protein interactions

2.2.5 PHYLOGENETIC PROFILES

Phylogenetic profiles describe patterns of presence-absence of proteins in a collection of organ-
isms. The construction of phylogenetic profiles[15] begins with a collection of k completely se-
quenced genomes G from different organisms and a collection of l proteins P of interest. For each
protein pi, a phylogenetic profile is represented as a k-length binary string s = s1s2 · · · sk where
sj = 1 if protein pi is present in genome gj and sj = 0 if protein pi is absent in genome gj .

Table I shows an example of the construction of phylogenetic profiles. In this example, phy-
logenetic profiles are constructed for 8 proteins (p1, p2, p3, p4, p5, p6, p7, p8) indicating their pres-
ence (or absence) in 5 genomes (g1, g2, g3, g4, g5) from different organisms. Note that all proteins
p1, . . . , p8 are present in genome g1.

Functional coupling of proteins is then inferred by clustering proteins according to the intrinsic
similarities of the underlying phylogenetic profile patterns. It is often concluded that proteins
associated to the same cluster are functionally related. For the example shown in Table 2.1, a
potential functional association between proteins p2 and p7 would be identified by this method as
they posses identical phylogenetic profiles.

The logic underlying this reasoning is that proteins with similar phylogenetic profiles are likely
to interact in performing some biological process. In effect, there should be an evolutionary pres-
sure acting on a group of proteins in order to preserve a function that confers an advantage to the
organisms.

18

2.2.6 OTHER IN SILICO METHODS FOR DETECTING PROTEIN-PROTEIN INTER-
ACTIONS

There are many other methods apart from the ones we have mentioned in this section that have
been used with good results in the Computational Biology community. One of such are the so
called voting methods, like the STRING repository[10]. This type of methods attempt to create
a framework in which several different approaches are integrated into a single scheme. For this,
all of the ’sub methods’ output is converted into a binary entry, a vote of sorts is given to each
method. After that, it becomes a weighted sum of each proposed relationship, and the resulting
interactome is built from that. As we can see, there are some problems associated with this
method. First, by restricting the votes of each procedure to be binary we are obviously losing
information. For example, if we have a method that returns values between the [0,1] range, we
have to determine a certain threshold that tell us from which point it becomes 1 or 0. Another
obvious problem that arises from this is that either we will have to set the threshold values in a
more or less arbitrary way, or we will have to resort to yet another algorithmic layer in order to
determine the best possible value for this cutoff.

2.3 COMPUTATIONAL CONTEXT

For the analysis of the biological input data we received, we used two distinct techniques from the
Evolutionary Computation corpus. One is a variant of classic genetic algorithms called Grouping
Genetic Algorithms, which we used to discover the functional clusters proteins are divided into.
The other one was multiobjective genetic algorithms, through which we combined the different
input data we received into a single schema, in order to optimize the search process. We will start
this section by explaining how a classic genetic algorithms works, and then proceed to explain the
variants we used.

2.3.1 SIMPLE GENETIC ALGORITHMS

Genetic algorithms can be considered as a search technique whose algorithm is based on the me-
chanics of natural selection and genetics. It has been successfully used in realms as diverse as
search, optimization, and machine learning problems, since they are not restricted by problem spe-
cific assumptions such as continuity, existence of derivatives or unimodality.[16]. In rough terms,
a genetic algorithm creates a collection of possible solutions to a specific problem. Initially those
solutions are tipically randomly generated solutions, so their initial performance is normally poor.
However, no matter how bad, there will be small segments of our collection of solutions that will
be nearby our desired solution, that is, partially correct answers. Genetic Algorithms exploit this
characteristic by recombinating and progressively creating better solutions, so that by the end of
the run we have achieved one solution that is at least nearly optimal.

Although Genetic algorithms have greatly diverged since their original inception into a big
number of different variants like Genetic Programing, Evolutionary Computation, Evolutionary
Strategies and the such, the basic principles that all share can be described as follows:

19

• An encoding: Genetic algorithms, in most cases, don’t directly work with the parameters
of the underlying problem, instead those are encoded into a way particular to our problem.
Such an encoding is called a Gene. Genes themselves are arranged into chromosomes, which
represent a possible solution to a problem. Chromosomes are grouped into a populations,
which is a set of solutions the program presents to a problem. Through different operations,
the algorithm keeps improving those solutions until an appropriated one is found.

• A Fitness function: Rather than using derivatives or other auxiliary knowledge, the fit-
ness function is used as a measure of the “survival strength” of the individuals of our
population[17]. In more concrete terms, a fitness function will evaluate an specific condition
we want our solution to meet. For example, in a maximization problem, the best solutions
would correspond to the parameters that gave provide highest objective function values.

• A reproduction scheme: It refers to a mechanism that tells us how to select the members of a
population that will make it to the next generation. It is not simply a matter of selecting the
best individuals, but also of maintaining variability in order to keep a broad search scope and
avoid local optima, while at the same time identifying interesting search spots and exploiting
them.

• A recombination scheme: One of the cores of a genetic algorithm, which basically tell us the
process that we will use to combine the different solutions into a new solution. This can be
achieved by recombining two solutions (crossover), tweaking a single solution (mutation) or
by some other scheme.

2.3.2 THE GROUPING GENETIC ALGORITHM

As mentioned earlier, the Grouping Genetic Algorithms (GGA) is a technique developed by Em-
manuel Falkenaeur that stemmed from the fact that traditional GA’s performed poorly when applied
to grouping problems. Falkenaeur proposed a design where the chromosomes were not a set of el-
ements which conformed a solution, but that the genes themselves represented the groups, and as
such the chromosomes were a collection of groups, instead of directly containing the elements.
As such since the base structures are quite different, the crossover and mutation operators vary
significantly compared to those of Simple Genetic Algorithms. We will go in greater detail of our
implementation in Section 3.3

2.3.3 MULTI-OBJECTIVE GENETIC ALGORITHMS

Classic Genetic Algorithms, as defined by Holland[18] consider a single objective function to use.
(That is, if there are multiple objectives to optimize they must be collapsed to a single objective
function). While this is useful for a limited set of problems, a larger collection of the problems
that can be found in nature are restricted by multiple constraints, or must meet a diverse number of
requirements at the same time. At the same time, multi-objective problems have always presented

20

one of the greatest challenges for algorithm designers. Because of this, alternative approaches,
such as those presented by Multi-Objective Genetic Algorithms have gained much interest in recent
years. [19].

Once all of this is said and done, the problem of how to use multiple fitness functions into a
single algorithm remains. Multiple solutions have been designed, however they can be grouped into
two main classifications: a priori techniques and a posteriori techniques. The former ones need to
have the importance of our objectives defined before the search is undertaken. These include linear
aggregations techniques, lexicographic techniques (which give a priority to different objectives)
and so on. These techniques have been shown to be weak on multiple comparison works, since they
require a predetermination of the objective priority, which means we are more or less arbitrarily
limiting the search space, and as such we cannot find all the optimal solutions for our problem.
On the other hand a posteriori techniques implicitly searches for the solutions that optimize all of
our objective functions. There are multiple examples of these kind of algorithms, however the ones
who have been reported to give the best results [19] and have a more widespread used are the Pareto
Genetic Algorithms family (like the Nondominated Sorting Genetic Algorithm(NSGA)[20], or the
SPEA2 by Zitzler[21]). In this work, we will proceed to use one of the variants of the algorithm,
known as the Niched Pareto Genetic Algorithm.

Pareto optimum

When working with multi-objective systems, the concept of optimum changes because we have
to find good compromises or trade offs among our objectives. For example, not all of our objec-
tives may be directly linearly related, or they may actually be contradictory, yet we still have to
maximize(or minimize, depending on the problem) both of them as much as possible.

The most commonly adopted definition of optimality is the one proposed by Vilfredo Pareto
in 1896, that tells us that the vector or chromosome ~x∗ is Pareto optimal if there exist no feasible
vector ~x within our population that would decrease some criterion without causing a simultaneous
increase in at least other criterion.

We also need to introduce the definition of Pareto Dominance. A vector ~u = {u1, ..., uk}
(where each member is a particular fitness value) is said to dominate another vector ~v when ~u is
partially less than ~v, that is, at least one the members in ~u is strictly less than its equivalent member
in ~v (for a minimization problem) and the rest of the members in ~u are equal or less than their
counterparts.

Conversely, Pareto non-dominance of a vector ~u to a vector ~v means that ~v does not dominate
~u,or in plain words, we cannot find a value in ~v that is less than a value in ~u without also finding
another fitness in ~v that is bigger than its ~u counterpart.

Over these definitions we create the Pareto Set (P ∗) which is the collection of all the vectors in
our population that are non-dominated by the rest of the population.

The evaluated objective vectors of P ∗ build up what is known as the Pareto Front (PF ∗),
geometrically the PF ∗ can be defined as the boundary of the design region, or in the locus of the
tangent points of the objective functions. [19]

21

Figure 2.4: Example of a Pareto front. The yellow region represents the feasible area. The red line
represents the pareto front. The blue points represent the current population

All these concepts are best exemplified in Fig. 2.4. This is an hypothetical minimization
problem limited by two constraints, shown by axis X and Y . The yellow area represents those
points that meet with the minimum limitations imposed by our constraints (in other words, any
point that appeared in this area would be an unfeasible solution). The points represented by blue
circles represent the solutions in our current population. Since this is a minimization problem, we
say that the points that are furthest from the red dotted line are strictly Pareto dominated by the
points that are over this read line, given that this circles represent a better minimization solution
than the others. On the other hand, all of the circles that are over the red line are non dominated by
the rest of the population. The set formed by our non dominated solutions is the Pareto set. The red
line represent the set of solutions towards which all of our population should eventually converge,
the Pareto front of our solution set.

Niching techniques

Niching methods are a series of techniques developed to maintain diversity within a population. It
is often the case that when the Pareto front is being built, the population has an early convergence
towards some zone of the Pareto front, leaving whole regions untouched. Obviously this goes
against the spirit of generating the whole Pareto set, so the niching methods were introduced as a
set of techniques that aim to maintain diversity. [22]

22

Figure 2.5: Example of an unevenly distributed Pareto front

Fitness sharing

Fitness sharing refers to a technique in which we analyze the placement of solutions (e.g. in
objective function space) and penalize those located in the most crowded areas. By doing this
we avoid having all the chromosomes in one area and ensure variability. We do this by applying
formula 2.1 where dij refers to the distance between chromosomes i and j, and σshare refers to the
distance threshold, a parameter we introduce to the algorithm that defines what is the maximum
distance for two chromosomes to be considered as part of the same niche. We apply this formula
to our candidates, and the one which has the smallest fitness is located in the most crowded area,
and as such is the one that holds the lowest exploratory value. This is best exemplified in Fig. 2.5.
In this figure we have a Pareto front, represented by the zone enveloped by a dotted line, and two
candidates for our next generation, represented by the red circles. As we can see, the left candidate
is in a more crowded area when compared to the right candidate. By choosing the right candidate
over the left one, we maintain more variability within our population, and diminish our possibilities
of falling into a local minima.

N∑
i=0

sh(dij) (2.1)

sh(dij) =

{
1− (dij/σshare) dij ≤ σshare

0 otherwise
(2.2)

23

The niched Pareto genetic algorithm

The niched Pareto algorithm combines both a Pareto optimum next generation construction with
a fitness sharing scheme to maintain variability. The version we use is the one described in [23],
a niched tournament Pareto genetic algorithm. We will go in greater detail about how do we
implement this algorithm in a further section when we explain our work. However in a broad sense
we use a tournament scheme in order to select those members of the current population which will
pass to the next population. The winners are selected by choosing those who are non dominated
with respect to their competitors against a sample subset of the population. In case we find that
the competitors are tied, we use a fitness sharing scheme to select those that will pass to the next
generation. Through this method we can progressively construct better Pareto fronts.

As a first approach, we selected this method, which is considered of first generation over other
more recent alternatives because of its ease of implementation. In order to cover its lack of an
elitism scheme, we introduced a separate elitism function that selected the best members of each
individual fitness function, and the solution that best balanced the different fitness functions in our
algorithm.

2.3.4 USING GENETIC ALGORITHMS AS A CLUSTERING METHOD IN BIOINFOR-
MATICS

Genetic Algorithms have been previously used as an aid in different clustering processes to auto-
matically determine many of the parameters these algorithms need. One of the most common uses
is to calculate the number of centroids an algorithm will work with, or helping the algorithm to
avoid local minima.[24] However the use of Genetic Algorithms as a clustering process in and of
itself has only raised interest in recent years.

Grouping Genetic Algorithms were first developed by Falkenauer in 1998 when applied to the
optimization of production lines, and from then it has been applied to multiple areas, because of
its ability to seemingly find the optimal clustering of landscapes where classic clustering algo-
rithms have serious problems to work with great success, like Intrusion Detection Systems[25] and
Control systems[26], however its use in bioinformatics is scarce at best.

On the other hand, Multiple Objective Genetic Algorithms have seen a wider use in Bioin-
formatics, with many successful applications in areas such as System Optimization [27, 28], and
inverse problems[29]. However its combination with Grouping Genetic Algorithms hasn’t seen
much development. One of the first approaches was proposed by Deb[30], when he applied ap-
plied a multi-objective optimization algorithm in order to classify cancer data. Deb reported that
he had obtained satisfactory results in obtaining optimal clusters with minimal false positives and
sizes. Similar approaches have been tried more recently by Facelli and others[31].

However, in those works the multiple objective functions have only been used as a measure
to introduce multiple computational clustering characteristics into the classification process. Deb
used fitness functions that minimized both the cluster size and the false positives. Although the
introduction of such data is of great help for the classification process of the proposed data, we
believe that it would also be interesting to introduce various biological data in the form of different

24

fitness functions in order to not only increasing the computational congruence of our clusters, but
also of their biological relevance.

In other words, while there have certainly been attempts at introducing techniques from both
the clustering and evolutionary computation community in order to mine biological data, it has
always been used from a strictly computational perspective. The different fitness functions and
clustering factors that previous authors have applied do not take into account the great diversity
that biological input data brings to a problem. While this certainly is a challenge in and of itself, it
also represents a vast horizon of data that would allow us to extract a lot of information if we could
combine the different input parameters into a single data mining process.

2.4 K-MEANS

In this section we will proceed to briefly explain what is and how does the k-means method works,
which is the reference method we used. K-means is one the most widely used clustering methods
because of its easiness of implementation and wide use. The algorithm was first published by
Lloyd in [32], and since then it has become one of the staple algorithms in the community, and as
such it is a good reference algorithm for any new algorithm to be benchmarked against.

In broad terms, k-means is a partitioning algorithm which aims to make k clusters out of n
observations, in which each point belongs to the cluster with the nearest mean. Hence, we possess k
means. We can find the pseudocode of the algorithm in 1. As we can observe from the pseudo code,
the algorithm is very simple, however it has been found to be one of the most flexible clustering
algorithms among all the options available.

Algorithm 1 k-means
Require: for n observations and k target clusters
Randomly initialize the k centroids position.

while algorithm has not converged do
(assign each observation to the nearest mean)

(move each mean location to the calculated average of each

centroid)

end while
return population

3. PROPOSED MODEL

In Tapia and Vallejo[9] we presented an initial approach to obtaining protein-protein interaction
complexes. In this section we will proceed to explain the framework we have developed for this
endeavor.

3.1 THE INPUT DATA

3.1.1 THE COG DATABASE

One of the most well known Phylogenetic Profiles databases is provided by the Cluster of Or-
thologous Groups of proteins[33], which we have previously used coupled with other clustering
algorithms with great success[8, 7]. This database consists of a collection of conserved protein
families (COGs) that are presumed to be orthologous.

Particularly, we relied on the 43 completely sequenced genomes COG initial version, in which
phylogenetic profiles are represented as 26-length binary strings. These genomes come from three
different domains: 6 archaea, 19 bacteria and 1 eukaryota. In constructing phylogenetic profiles,
43 genomes were collapsed into 26 representative genomes. The reason was that some of these
genomes are very similar to each other or they belong to a subspecies of other organism represented
in the database. The organisms represented in the COG database are listed in Table 3.1.

The number of that can be represented by a 26-length binary vector is 226 = 67, 108, 864. This
number is far greater than the number of known proteins. The COG database provides a collection
of 3,307 phylogenetic profiles, which are fed into our clustering algorithm.

25

26

Table 3.1: Genomes represented in COG database (part I)

ID Description Domain
A Archaeoglobus fulgidus archaea
O Halobacterium sp. NRC-1 archaea
M Methanococcus jannaschii archaea

Methanobacterium thermoautotrophicum archaea
P Thermoplasma acidophilum archaea

Thermoplasma volcanium archaea
K Pyrococcus horikoshii archaea

Pyrococcus abyssi archaea
Z Aeropyrum pernix archaea
Y Saccharomyces cerevisiae eukaryote
Q Aquifex aeolicus bacteria
V Thermotoga maritima bacteria
D Deinococcus radiodurans bacteria
R Mycobacterium tuberculosis bacteria

Mycobacterium leprae bacteria
L Lactococcus lactis bacteria

Streptococcus pyogenes bacteria
B Bacillus subtilis bacteria

Bacillus halodurans bacteria
C Synechocystis bacteria
E Escherichia coli K12 bacteria

Escherichia coli O157 bacteria
Buchnera sp. APS bacteria

F Pseudomonas aeruginosa bacteria
G Vibrio cholerae bacteria
H Haemophilus influenzae bacteria

Pasteurella multocida bacteria
S Xylella fastidiosa bacteria
N Neisseria meningitidis MC58 bacteria

Neisseria meningitidis Z2491 bacteria

27

Table 3.2: Genomes represented in COG database(part II)

ID Description Domain
U Helicobacter pylori 26695 bacteria

Helicobacter pylori J99 bacteria
Campylobacter jejuni bacteria

J Mesorhizobium loti bacteria
Caulobacter crescentus bacteria

X Rickettsia prowazekii bacteria
I Chlamydia trachomatis bacteria

Chlamydia pneumoniae bacteria
T Treponema pallidum bacteria

Borrelia burgdorferi bacteria
W Ureaplasma urealyticum bacteria

Mycoplasma pneumoniae bacteria
Mycoplasma genitalium bacteria

3.1.2 THE GECONT DATABASE

For our experiments we used a gene database provided by the Biotechnology Institute from the
National Autonomous University of Mexico (UNAM). This database was originally used as a
backend for GeCont[34], a tool that graphically displays the gene context of a certain protein the
user is interested in. As such, the database is quite rich in terms of the information we need, such
as including the proteome of different species, starting and ending nucleotide, scientific name,
corresponding number ID from the COG database etc. We used this database as our source of
information for the Genomic Directionality and the Intergenic Distance fitness functions.

3.1.3 OTHER DATABASES

Although the databases we mentioned above where the ones we fed the algorithm, we used other
databases as reference values for our benchmarking process. They were mainly the DIP and Ecocyc
databases[35, 36], and a series of operons found in the E. Coli.

The DIP and Ecocyc databases consist of a collection of about 350 protein pairs whose func-
tional relationship has been experimentally proven. Although they provide only for a small subset
of true positives of what represents a much bigger interaction network, it is a necessary first step
stone in our algorithm.

Similarly, an operon database was also used as in reference [37]. Operons can be defined as a
functioning unit of adjacent nucleotide sequences including an operator, a common promoter, and
one or more structural genes, which is controlled as a unit to produce messenger RNA (mRNA),
in the process of transcription. They are normally found on prokaryotes, which is quite conve-
nient when we consider that 80% of our reference database is formed up by such type of beings.

28

Figure 3.1: The lac operon
1

An example of one of the most common operons, the lac operon is illustrated in Fig. [38]. In
consequence, an apt grouping mechanism would have to group together this patterns, and hence it
becomes a good way to our validate our data.

3.2 PREPARING THE DATABASES

In the following section we proceed to explain the different pre processing steps we applied to the
raw databases as we received them. In general, the databases that we had can be divided into two
groups. Those that required little preprocessing and which were simple enough in nature, like the
COG, DIP and Ecocyc databases, and those whose structure was too complicated to be directly
treated (either because of their structure, their size, or both), and that as such were parsed and
stored into a proper database. Examples of these are the Gecont database, and the E. Coli database.

3.2.1 THE COG DATABASE

The COG database possessed a relatively simple structure when compared to the other databases, as
exemplified in table 3.3. It basically consists of two fields, the first being a binary string containing
the phylogenetic profile, and the second being an identifier for the COG. Given the simplicity and
small size of these database, we decided to keep it as a text file. While certainly we are not keeping
everything to a single database, this scheme allows to perform an asynchronous loading stage, in
the sense that we can create multiple threads all loading the data at once from our different data
sources, instead of overloading a single database server, which effectively diminishes our loading
stage computation time.

1Image taken from Mike Farabee’s webpage

29

Table 3.3: Example of an entry of the COG database.

00000011111110111101000000 COG1490
10111101110010110000010000 COG1514
01011010111110111101111001 COG1670

Table 3.4: Example of an entry of the GeCont database. Some fields are ommited

190..255 + 21 16127995 thrL - thr operon leader peptide
337..2799 + 820 16127996 thrA COG0460E,COG0527E fused aspartokinase

2801..3733 - 310 16127997 thrB COG0083E homoserine kinase
3734..5020 + 428 16127998 thrC COG0498E threonine synthase

3.2.2 THE GECONT DATABASE

The GeCont database, as we obtained it was composed of a series of plain text files, where each file
contained the codified genome of a different species. The format each file came with was similar
to the one show in Table 3.4, which is, in order

• Nucleotide where the transcription starts and ends

• Direction of the transcription, where - stands for left and + for right.

• Number of nucleotides without introns.

• Catalog number

• Protein short name

• List of COGs associated to this protein.

• Complete name of the transcripted protein.

As we can see from that table the information does not follow the 4-normal form of relational
databases, furthermore it is not directly suited as input data for our algorithm, and as such it needs
some preprocessing.

What we did was parsing the data using a Java program, and outputting the data on a SQL script
file, to later be inserted into a MySQL database as shown in the entity relationship diagrams in
Tables 3.5 and 3.6. (We needed to separate the COG information so that the data was normalized.)

This is how we initially loaded our data. Our main program would then connect to the database
and download to the program local memory space this information on demand, specially the rela-
tionship between COG’s and their relative context. However, it is obvious that although we will
only perform this data exchange once, when we are downloading the data the database server will
have to perform one major join operation between the two tables (considering they have more than

30

Table 3.5: The context table entity relationship model

Field Type Null Key Default

species varchar(40) YES NULL
direction varchar(1) YES NULL

initialNucleotide int(11) YES NULL
finalNucleotide int(11) YES NULL

lenght int(11) YES NULL
serialNumber int(11) NO PRI 0

name varchar(10) YES NULL
alternativeName varchar(15) YES NULL
completeName varchar(30) YES NULL

Table 3.6: The Gecont-COG table ER model

Field Type Null Key

ID int(10) unsigned NO PRI
serialNumber int(11) NO MUL

COG varchar(10) NO

3.5 million registers between the two, it is a major, and to a certain level unnecessary operation).
That is why we defined a third virtual table that, while it is not normalized, it is optimized in other
respects as to only contain the information that we will use in this impĺementation in a readily and
easily available way. The model is shown in Table 3.7. In this table we only included identified
proteins whose COG is included in the database, and we trimmed down the species to only those
that also appeared in our phylogenetic profiles database. This resulted in about 100000 entries.

3.2.3 THE DIP AND ECOCYC DATABASES

The DIP and Ecocyc databases were two databases possessing a simple structure. They have two
fields, one which is the group number, and a second which is the COG name, and it is organized
in pairs, representing experimentally proven protein-protein relationships. An example of how it
is organized can be seen in Table 3.8

As mentioned earlier, these databases were just inputed as a text file, which was parsed by the
preprocessor of the genetic algorithm, and loaded as an internal array for use by the profiler engine.

3.2.4 THE E. COLI OPERON DATABASE

The E. Coli operon database as we used is a repository available publicy online in

31

Table 3.7: The context table entity relationship model

Field Type Null Key

ID nt(11) NO PRI
species varchar(30) YES

direction varchar(5) YES
alternativeName int(11) YES

COG varchar(10) YES
initialNucleotide int(11) YES
finalNucleotide int(11) YES
completeName varchar(30) YES

Table 3.8: An example of the DIP table

Group Number COG

4 COG0055
4 COG0056
5 COG0055
5 COG0224

http://www.cib.nig.ac.jp/dda/taitoh/ecoli.operon.html

In order to use it, we had a parser download the information from the page, and parse the
HTML table format into an internal array of memory. Given that the number of operon groups
is relatively large, we also parsed it as a MySQL database for use in the algorithm proper (as we
mentioned earlier, the E. Coli operon database was used as a reference database in order to test the
effectivity of the algorithm). The E-R relationship model of this database can be found in Table
3.9. The list of which cluster corresponded to what operon was kept in a separate index table,
although for the statistical usage that was given to this database it was not necessary to use.

Table 3.9: Example of early clustering genetic algorithms

Element Cluster Key
id int(10) unsigned PRI

cluster int(10) unsigned
cog varchar(10)

32

Table 3.10: Example of early clustering genetic algorithms

Element Cluster
e1 g1

e2 g3

e3 g4

e4 g2

e5 g1

e6 g3

e7 g2

e8 g1

3.3 THE GROUPING GENETIC ALGORITHM

Genetic algorithms can be defined as a search technique whose algorithm is based on the mechanics
of natural selection and genetics. It has been successfully used in realms as diverse as search,
optimization, and machine learning problems, since they are not restricted by problem specific
assumptions like continuity, existence of derivatives, unimodality and similar.[16]. In rough terms,
a genetic algorithm searches a landscape of possible solutions to a specific problem. Initially those
solutions are typically generated at random, so they will not perform well. However, no matter how
bad, there will be small segments of our solution collection that will be near our desired solution,
that is partially correct answers. Genetic Algorithms exploit this characteristic by recombinating
and progressively creating better solutions, so that by the end of the algorithm we have achieved
one solution that is near or is what we seek for, the optimal solution

However, when they were first applied to clustering, Genetic Algorithms did not perform as
well as they had done for other type of optimization problems. In the first proposed approach, the
design was similar to that shown in Table 3.10. For a group of elements ek — k = 1..8 and clusters
gi — i = 1..4, each gene was represented by an element-group pair, expressing which groups each
element belongs to.

However, this type of representation was found to have a very poor capability of converging
into useful solutions. Structures and clusters where often eliminated by the way the search space
is explored by Genetic Algorithms. As a response to this, Emmanuel Falkenauer developed the
Grouping Genetic Algorithms (GGA)[12]. Falkenauer proposed a design where the chromosomes
were not a set of elements which conformed a solution, but that the genes themselves represented
the groups, and as such the chromosomes were a collection of groups, instead of directly containing
the elements.

33

Figure 3.2: Structure of a population

3.3.1 BASIC STRUCTURES

Figure 3.2 depicts the hierarchical structure of the genetic algorithm we used. Although it is
remarkably similar to that of Simple Genetic Algorithms (GA), there are some differences that are
worth noticing.

Population: The population structure that was used, as with GGA, is a collection of solutions
our current generations is comprised of. It takes a series of COG’s to be sorted and the fitness
functions data to be used as an input. It is important to note that the algorithm does not need to
be fed the number of groups that the COG’s will be sorted into as an input, the algorithm will
determine that by itself, this fact gives it an important edge over other classic grouping algorithms.
The initial population is constructed from a random distribution, and further populations are the
product of applying evolution operators to the previous ones.

Chromosome: As we mentioned earlier, a chromosome within the GGA context refers to a
proposed arrangement of the elements into different clusters. Other than sharing the elements they
arrange, each clusters has its own number and size of clusters.

Group Genes: A group gene in our algorithm is defined as a limited collection of COG’s
(a cluster), and a set of special structures called the Consensus Structures (CoSt), which are the
centroids of the members of a group according to the different fitness structures that we will be
evaluating as described earlier.

3.3.2 GENETIC OPERATORS

Traditionally Genetic Algorithms exploration and exploitation mechanisms can be summed up into
two genetic operators: Crossover and Mutation. Crossover in clustering genetic algorithms is nor-
mally done by exchanging clusters between different chromosomes, and rearranging the possible
inconsistencies afterwards (Members that are in more than one cluster, or missing members). We

34

Figure 3.3: Behavior of the fitness functions using crossover and mutation

performed a comparison study with and without crossover across a series of 10 executions of the
algorithm over 192 generations and calculated the average evaluation for each generation under our
three biological fitness functions, the results are shown in the Figures 3.3 and 3.4. As it can be seen
in our particular problem crossover does not effect noticeable enough exploratory capabilities; on
the contrary, our validation process (that we will later explain) showed that more than often it was
disruptive of the biological significance of the data, and as such it only slowed down the conver-
gence process, since crossover had a computational complexity greater even than the evaluation
process. Moreover, the computational complexity of the crossover operation was greater than any
of its mutating counterparts. As such we decided to use only the following mutation operators.

• RandomNewGroup: Grabs random members from different groups and creates a new
group with them.

• RandomDeleteGroup: Selects a random group and disperses its members through different
groups in order to remove it.

• MergeStrong: Searches two groups whose centroids (according to a random fitness func-
tion) are very close in terms of the distance between them, and them proceeds to merge them
into a single group, similar to what is done in Fig. 3.5

• RehashWeak: Searches for one group whose variability between its members is consid-
erably greater (surpasses some threshold) than the average of the whole chromosome, and
scatters its members across the rest of the clusters within one chromosome. An example can
be seen in Fig. 3.6

• Weeding: Searches for outliers (according to a random fitness function) within a group and
reallocates them to a group whose centroid is reasonably near from the outliers, like what is

35

Figure 3.4: Behavior of the fitness functions using mutation only

Figure 3.5: Example of how the MergeStrong operator works

Figure 3.6: Example of how the rehashWeak operator works

36

Figure 3.7: Example of how the weeding operator works

shown in Fig. 3.7

Normally the mutators are preferred to be entirely random in its application since theoretically
this maximizes the search space exploratory capabilities of Evolutionary Algorithms. However,
here we decided to introduce directed mutators that worked for specific cases, since there are
specific regions from the search space that we are interested in mining. That is, we are further
increasing the search capabilities of the algorithm into making it specifically explore the regions
we are interested in.

3.3.3 USING A SINGLE EVALUATION FUNCTION

As it was explained before, the initial population will be constructed from an uniform distribution.
Once the first generation was generated , a series of evaluation functions were applied. Which and
how many evaluation functions should be used was determined after a number of empirical tests
in which various techniques were tried, included but not limited to, doing a n to n correlationship
comparison of the different species all the COG’s within a group gene appeared in, or creating an
artificial type of COG comprised of the average of all the COG’s included in a group, and compare
the COG’s against that average.

The best metric that was found was creating a Cost akin to that used in motif analysis. The
fitness operation would then only be applied n times (one for each member of the group against
the Cost) reducing the evaluation time by one polynomical order. This also proved having a high
performance and efficiency in doing an exploratory work across the search space, not showing any
significant inferiority to doing a COG per COG comparison. An increasingly bigger bonus and
penalization was given for every COG that was sufficiently near (or far) from the Cost. This was
done in order to award those groups whose members were generally close to each other, against
those groups which merely had a large number of members.

The process that computes the fitness for each Genetic Group is described in Algorithm 2. In
the algorithm, the lowerThreshold and an upperThreshold is used to give a pendulum effect
to the algorithm. If two pair of COG’s within a group have less than a predetermined number of
differences, the algorithm will reward it by further decreasing the fitness value, which, because it

37

Table 3.11: Example of a phylogenetic profile centroid

Protein g1 g2 g3 g4 g5

p1 1 1 0 1 1
p2 1 1 1 0 1
p3 1 0 1 1 1
p4 1 1 0 0 0
p5 1 1 1 0 1

centroid 1 0.8 0.6 0.4 0.8

is a minimization problem, it will make it a better solution. On the other hand, if a cluster has a big
number of differences, the algorithm will retaliate by punishing the solution more and more each
time a new difference is found. This is done in order to favor highly cohesive clusters, and to avoid
clusters with a high variance within its members.

Algorithm 2 Evaluation function for the single objective genetic algorithm

pFactor ← 1

nFactor ← 1

for all COG’s within the group do
COGEvaluation = differences with the centroid

if COGevaluation < lowerThreshold then
COGevaluation∗ = pFactor

pFactor-= positivePendulum

else if COGevaluation > upperThreshold then
COGevaluation∗ = nFactor

nfactor+= negativePendulum

end if
groupEvaluation+ = COGevaluation

end for
return groupEvaluation

3.3.4 SELECTION OPERATORS

There are several operators in the Genetic Algorithms literature that we could have used, including
but not limited to, Roulette, Boltzmann probability distribution, Tournament, Elitism.[17] At the
end,preliminary experiments suggested that a combination of both Tournament and Elitism had the
best results for our particular application.

38

3.3.5 IMPROVING THE ALGORITHM PERFORMANCE

We also applied a parallel global genetic algorithm architecture that enabled our algorithm to be
run on parallel computing systems. Although it was only implemented on a Quad Core CPU, and
a part of the algorithm was tested on a GPGPU system, the algorithm is capable of running on any
HPC enabled system.

What we did was for the fitness function evaluation, and next population formation functions
to dynamically divide the population among the different processors in our system in that timestep.
(This layer is abstracted from the rest so that any parallel system can be implemented later). As
such, when running the generateCentroids, evaluate and evolve operations we randomly
divided the population between each parallel process, to later merge it again for input for the next
algorithm step. It was done this way in order to recover the original stochastic method inherent to
genetic functions, instead of having 4 different populations evolving independently. Internal ex-
periments show that for the 4 core system we can expect a 300% improvement on the performance
of the algorithm.

3.3.6 INTEGRATING THE ALGORITHM

Now that we have described each of the parts of the algorithm, we will proceed to explain how it
all connects.

Algorithm 3 Overview of the complete algorithm

population ← randomGenerator(100 chromosomes)

evaluator ← profileDistanceFitness

operator ← {RandomNewGroup,RandomDeleteGroup,MergeStrong}
operator ← {RehashWeak,SplitStrong,Weeding}
evolution ← {Elitism, Tournament}
load the input databases

(in parallel) population.generateCentroids

(in parallel) population.evaluate(evaluator)

while population.averageEvaluation > threshold do
(in parallel) population.evolve(evolution,operator)

(in parallel) population.generateCentroids

(in parallel) population.evaluate(evaluator)

end while
return population

The so called threshold that ends the cycle is normally considered a cumulative change over
a number of generations. When over the generations the evaluation average does not show a
significant change, the evaluation will finish.

39

Figure 3.8: Average run of the GGA engine

3.4 RESULTS USING A SINGLE OBJECTIVE EVALUATION FUNCTION

We conducted a large series of computational experiments on obtaining the clusters on using GGA.
Through this experiments, we obtained two sets of results. The Grouping Genetic algorithm gave
us both the number of groups, and created the respective clusters using only lists indicating the
co-occurrence of the phylogenetic data input. The data was validated using the ECOCyC and DIP
databases, against the clusters proposed by the k-means method. It is important to note that for
the algorithm determining the number of groups and determining the composition of the clusters is
something it does at the same time, however for the sake of reporting we will be separating them.

3.4.1 NUMBER OF GROUPS

Throughtout the numerous number of computational experiments we made, the final number of
clusters was fairly consistent. In Figure 3.8 we can see a graph that represents how the groups
evolved throughout a series of experiments, with the brackets representing the highest variations
from the average. As we can see, towards the end the algorithm always stabilized around the 120
groups area. The ideal number of groups determined by the algorithm is a number between 110
and 120 groups, however, as we can see below, the speed of the algorithm was highly dependent
on how the data was initialized in the first random construction. Despite this, the algorithm always
arrived at the same range in terms of the number of groups, which demonstrated the robustness of
the genetic algorithm.

40

Table 3.12: Percentage of correct EcoCYC/DIP group assignations

Run DB matches

Total DB entries 346
GGA Average Matches 256.7
k-means Average Matches 203

3.4.2 RUNNING TIME

In our initial version each generation took approximately 10 seconds to be completed, from the
very start of the evaluation to the generation of the next one, our algorithm runtime would ranged
between 15 and 20 minutes. The algorithm was later optimized for the fitness, mutation, crossover,
and special functions to be run in parallel so that we could use the server’s multi processors capa-
bilities as much as possible, and we could see an increase in speed in an order of 5 reducing the
clustering time to as little as 4 minutes. The results in this section, including the average shown
in 3.8, were extracted and calculated among an average of 20 runs of the algorithm which varied
between 100 and 300 generations each.

Still this can be seen as a time much bigger than that shown by classic grouping algorithms
(specially when compared to algorithms like k-means) however we have to take into account that
our GGA algorithm has a very flexible fitness functions that permitted us not only to include co-
occurrences, but several other factors that helps us in refining our groups, something that would be
extremely complicated to implement in an algorithm such as k-means.

3.4.3 VALIDATION OF RESULTS

The significance of the data mined by automated methods, specially when those are intended to
discover functionality which is unknown as of yet, is often difficult to assess. In the validation
phase we compared our results against known Biological databases, such as ECOCyC and DIP.
Similarly, the algorithm was found to identify several biological patterns whose correlation has
already been experimentally proven previously.

DIP and EcoCyC comparison:

As we mentioned, we used the EcoCyC and DIP database as a means to assert the expressiveness
of the results thrown by our algorithm and k-means. The entries found in DIP and EcoCYC entries
are a good way to measure the usefulness of our non-co-occurrence related metrics, since many
pairs in that list does not show that type of relationship, as proven by the direct approach k-means
takes. As it is shown by the validation process, GGA demonstrated to have a higher proficiency at
finding these kinds of relations.

41

Table 3.13: Excerpt from the GGA group where the purEK pair is located

COG Phylogenetic profile

COG0581 11101101111111111110110011
COG0413 01001111111011111011110000
COG0458 11110011111111111111110000
COG0065 11101011111111111111110000
COG0685 00011111110111111111110000
COG0035 01101111111111111101110011
COG0104 11111011111111111111110000
COG0287 11110111111111111111110000
COG0352 10011011011111111111110000
COG0157 11101011101111111111110000
COG0079 11111111111111111111110000
COG0045 11110111011011111111111100
COG0382 11111111011011111111111100
COG0714 11111111111011111010010010
COG0807 10010011111111111111110100
COG0026 01010011111111111111010000
COG0251 01001111111111111111110000
COG0041 11111011111111111111110000
COG1011 01111011111110111111010010
COG0226 11101101111111111110110011
COG0778 11111101111111111111110000
COG0127 11111111111111111111110110
COG0512 11111111111111111111110000
COG0059 10101011111111111111110000
COG1985 11100111111111111111110100

Operon comparison:

In order to assess the biological expressiveness of the results we obtained, they were compared
against a number of operons, as mentioned earlier. Our first comparison was with respect to the
purEK operon (which is a combination of COG’s COG0026 and COG0041); the results obtained
for our GGA algorithm are shown in Table 3.13.

An excerpt of the k-means output is shown in Table 3.14. This method failed to find purEK,
this method lacks the means to correlate beyond the co-appearance factor.

Similarly, we compared the results of the Leu E. coli operon, which includes entries COG0066,
COG0473, COG0119 and COG0065. The results of this comparison are shown in Table 3.15

A comparison against the hflA operon was made as well. This operon consists of a putative GT-
Pase (COG2262) and a putative integral membrane protease (COG0330). Our algorithm correctly

42

Table 3.14: Excerpts from the k-means group were the purEK disjointed pairs were located

COG

COG0364
COG0176
COG0337
COG0140
COG0703
COG0590
COG0299
COG0026
COG0801
COG0161
COG0502
COG0132
COG1539

COG

COG0034
COG0461
COG0284
COG0151
COG0150
COG0152
COG0041
COG0047
COG0046
COG0108
COG0294
COG0476
COG0001

Table 3.15: Excerpt from the GGA group where the Leu and SpeED operon pair are located

COG Phylogenetic profile

COG0473 10101011111111111111111000
COG0119 10111011111011111111110000
COG0065 11101011111111111111110000
COG0066 10101011111111111111110000
COG0104 11111011111111111111110000
COG0157 11101011101111111111110000
COG0152 11111011111111111111111000
COG1989 11101101110111111111110000
COG0581 11101101111111111110110011
COG0778 11111101111111111111110000
COG0147 11111111111111111111110000
COG0512 11111111111111111111110000
COG0714 11111111111011111010010010
COG0547 11111111111111111111110000
COG0159 11111111111111111111110100
COG0133 11101011111111111111110100
COG0421 10111111111010110011110000
COG1586 10111101100010110010000000

43

Table 3.16: Exerpt from the GGA group where the hflA operon pair is located

COG Phylogenetic profile

COG0519 11111111111111111111110110
COG0330 11111111111111111111111010
COG0611 11111101001011111111110000
COG1841 11111111111110111111011010
COG0475 10111111011111111111111010
COG0825 11001011111111111111111100
COG1120 11111000111111111101110001
COG2262 01101101111111111111010100
COG0493 00011111111111111010111010
COG0473 10101011111111111111111000
COG0026 01010011111111111111010000

assigned these two proteins to the same group, as shown in Table 3.16. On the other hand, k-means
was not able to recognize the relationship between these two proteins, and separated them into two
groups.

The SpeED operon also showed to have better results in our engine than k-means (COG1586
and COG421), as shown in Table 3.15

3.5 EARLY RESULTS DISCUSSION

The results mined by our algorithm were of more expressiveness and biological significance than
those obtained by more traditional grouping algorithms, as shown by the comparison data. This
was a byproduct of the added biological data that we were able to include in the fitness function
that further refined our group formation process. If we were to do the same thing in k-means, it
would require us to add this biological knowledge as an annex to the co-occurrence binary vector.
However, this is not as simple as it appears. For one, the data representation structure would
have to radically change, since there is no direct relationship between the data expressed by a
co-occurrence database such as the COG one, and the one data expressed by a database like DIP
or ECOCyC. As we start adding more biological data to the grouping function, like some text
mining to determine relationship based on the number of papers a certain number of COG’s appear
together, or a co-appearance database, the representation problem further escalates. This problem
is practically inexistent when defining this evaluators as just different steps within a fitness function
in a GGA system. Each factor just alters the fitness in one way or another, without its respective
data representation interfering at all with each other, making the resulting program much more
scalable, which results in a much easier way to further include new biological data in the way we
form groups.

Moreover, the fact that the algorithm requires minimal input is another tremendous advantage.

44

Not even the number of groups is of great importance, since this is evolved by the algorithm itself.
When running this type of protein function discovery algorithms, we do not possess much more
information than the bare minimum, and as such, the number of groups, the distance between the
centroids of each group and other factors classical grouping algorithms tend to ask for, is something
we traditionally determine either by using some other heuristic that will try to approximate these
values, or by mere trial and error.

As such, an algorithm that makes the determination of these initial parameters as part of the
search heuristic is of tremendous help. GGA’s have the advantage that they will not only determine
the number of groups and their composition as it has been discussed several times before, but also
has the flexibility as well to determine a myriad of other values.

However, there are still some disadvantages that need to be addressed in this algorithm. Al-
though the results are computationally consistent in terms of the correctness of the clustering of
the phylogenetic profiles, they are still biologically insufficient in the information they possess.
There are several ways to solve this problem. One of the approaches that has been tried is that of
including more biological information into the search process, like STRING[39] does. STRING
uses various information sources independently in order to determine relationship levels between
a network of proteins, and then present the results to the user in a table. That is, an a posteriori
analysis.

Not to mention that as we can see with some of the large group sizes, specially the one shown
in Table 3.13, there is little control over the size of the groups, and overall a tendency to over-
generalize can be seen in the algorithm. In general, it would be desirable to be able to have a
degree of control over the abstraction level the algorithm imposes over its clustering rules.

What we propose in the second part of our work is to integrate all this analysis in an a priori
approach through Multi Objective Genetic Algorithms[40, 41]. Our hypothesis is that integrating
multiple biological information into the genetic algorithm would direct us to a strong clustering
technique, and ultimately give us better results.

3.6 INTRODUCING MULTI OBJECTIVE FITNESS EVALUATION FUNCTIONS

For our multi-objective computational experiments we used three distinct fitness functions. A fit-
ness function that clustered data using phylogenetic profiles, another that clustered data using gene
transcriptional directionality, a third one that considered intergenic distance among the members
of a cluster and a final one that rewarded cluster connectivity.

3.6.1 PHYLOGENETIC PROFILES

Taking advantage of the modular design of our implementation, we directly adopted the Phyloge-
netic Profiles Distance fitness function we had used for the previous version of the algorithm and
just added the other two to the engine.

45

Table 3.17: Example of a context array field from an hypothetical COG

s1 s2 s3 s4 s5

Starting Point 32 16 17 34 12
Finishing Point 45 28 21 45 34

3.6.2 TRANSCRIPTIONAL DIRECTIONALITY

In a very similar approach as the one used for phylogenetic profiles, we constructed a centroid
of the group considering the number of groups that had a left or right directionality across the
set of species indicated in the phylogenetic profiles as containing the proteins in the cluster, and
added it as an additional field to each Group Gene. From here it becomes a task of minimizing the
distance to the centroid, or minimizing the differences in directionality of the proteins found in a
particular species, among all the species where our set of proteins are present. As we can see, both
the phylogenetic profiles and transcription directionality fitness functions tend to create smaller
groups.

3.6.3 INTERGENIC DISTANCE

In order to implement a Intergenic distance fitness function we first added a nx2 array (where n is
the number of phylogenetic profiles) that would contain the information of where the transcribed
protein original information started and finished, for each of the n species the array contains in-
formation from. (Table 3.17 contains a reduced example of this field). This information would be
later used by the fitness function. Which would create a list of these fields for each of the members
of the cluster it is analyzing, and arrange them on a species-starting/ending point- protein hierarchy
in a nx2xk 3-dimensional array, where k is the number of members in the cluster. We can see an
example for a single species sn on Table 3.18. The third dimension is formed by forming a list of
these for a set of species. From here, it becomes a matter of adding up all the distances between
transcription points.

So, the intergenic distance fitness function is calculated as described in equation 3.1

N∑
s=0

sp(s, p)− ep (3.1)

(3.2)

3.6.4 CLUSTER SIZE

This fitness function was introduced in order to balance the divisive nature of the other fitness
functions. Since they tend to minimize distance, one of the approaches the genetic engine could

46

Table 3.18: Example field of the context 3 dimensional array

p1 p2 p3 p4 p5

Starting Point 32 49 60 90 160
Finishing Point 45 54 73 99 189

take would be that of making just unitary groups. In order to counter that tendency the cluster
size fitness function was introduced, which is a fitness function that rewards those groups that
despite having a low variability have a greater size than the average of the population. This fitness
function has the disadvantage of being artificially created, in that it has no biological basis and
is only used because of its clustering merits, however on the other hand it allows for a numerical
graduation of the population cluster size that would allow someone analyzing the Pareto front to
have a more educated selection of the optimal solution according to the particular application were
the algorithm is being used.

3.7 IMPLEMENTATION OF THE EVALUATION FUNCTION

We used a niched Pareto algorithm as described by Horn[23], which combines both a Pareto opti-
mum next generation construction with a fitness sharing scheme to maintain variability. In a broad
sense we use a tournament scheme in order to select those members of the current population
which will pass to the next population. The winners are selected by comparing two members of
the population against a sample subset of the same population, and selecting the one which is non
dominated in respect to their competitors . In case we find that the competitors are tied, we use a
fitness sharing scheme to select those that will pass to the next generation. Through this method
we can progressively construct better Pareto Fronts.

Our implementation is done as shown in Algorithm 4, for a parent population parent, and a
target population offspring.

Additional to this, as we mentioned earlier we introduced a separate elitism function that cov-
ered for the NGPA inherent lack of a best solution conservation scheme. This elitism function
worked by selecting the best member of each individual fitness function, and the so-called ’knee’,
that is, the solution that best balances all the fitness functions in our algorithm.

47

Algorithm 4 Algorithm for the creation of a new population

while offspring.size < threshold do
1:2: c1← parent.randomMember

3: c2← parent.randomMember

4: list[]← parent.randomMembers

5: tournament(c1,c2,list)

6: if c1 is dominated and c2 is nonDominated then
7: offspring.add(c2)

8: else if c2 is dominated and c1 is nonDominated then
9: offspring.add(c1)

10: else
11: c3← fitSh(c1,c2)

12: offspring.add(c3)

13: end if
14: end while
15: return offspring

4. FINAL RESULTS

4.1 FORMATION OF THE PARETO FRONT

The algorithm succeeded in conforming a viable Pareto Front that combines in different degrees
the different fitness functions we used as shown in Fig. 4.2 (the intergenic distance fitness function
of each chromosome is not included in the plot, however we have to remember that the result
vector is a 4-dimensional value). Although further selection from this point is a task where a
proper Biologist should take the decision of which criteria combination is more viable, we selected
the element from the Pareto front that maximizes the profile distance, genome directionality and
intergenic distance fitness functions for comparison purposes.

4.1.1 STATISTICAL ANALYSIS ON THE PARETO FRONT

For statistical purposes, we ran our algorithm 30 times for 500 generations each instance, using
the four fitness functions described earlier. At the 500th population, every run of the algorithm had
200 members. We feeded all this data to a statistical engine and produced comparison plots using
as a basis the mean and the standard error of the mean as measuring basis. For example,in 4.3
we are plotting a subset of the runs we performed merely superposed one over the other. Taking
this data, we performed the statistical operations over every record of the algorithm, and obtained
Figure 4.4. As we can see in this and from the statistical information in Fig. 4.5 4.6, there is a
clear formation of a Pareto front that is consistently formed over several instances of our algorithm,
further proving the stability and correctness of our stochastic approach.

48

49

Figure 4.1: Initial random distribution of the population

Figure 4.2: Pareto Front formation. The curve is bended towards the viewer

Figure 4.3: Raw superposition of a subset of our runs of the algorithm

50

Figure 4.4: Phylogenetic profiles vs transcription directionality

Figure 4.5: Intergenic distance vs phylogenetic profiles

Figure 4.6: Intergenic distance vs transcription directionality

51

4.2 EXECUTION TIME

Despite having to deal with four evaluation functions instead of one as in our previous version,
the computational complexity of the Genomic directionality and Connectivity fitness functions is
equally linear - O(n) -, while the Intergenic Distance function is O(n2), being the overall complex-
ity of the algorithm of a low polynomical order. As such, the only real bottleneck of the overall
algorithm is the number of generations it takes to reach convergence.

4.3 ARRANGING OUR ALGORITHM

We ran our algorithm under several combination modes, each one was characterized by the number
and the type of fitness functions we used. Two multi-objective optimization algorithms with only a
phylogenetic profile distance or transcription directionality as the fitness functions (combined with
the size fitness function), three modes resulting from the combination of our three biological fitness
functions in pairs, and one mode resulting from the combination of all three fitness functions.

4.4 VALIDATION OF RESULTS

We compared against the same databases as we did in our first approach. In our first run, the al-
gorithm ran only with phylogenetic profile distances, which is the same algorithm that was shown
earlier with some minor optimizations. Although the clustering itself was not bad, when compared
to real biological data it was not able to detect many operons (In particular it was able to consis-
tently detect 6 operons. clpPX (clp Protease), glmUS (used for amino sugar biosynthesis), SpeED,
hFLA, leu E. coli, and purEK. In our second run we only considered genomic directionality (GD).
It is interesting to note that although the performance of this fitness function was slightly better
than that shown by phylogenetic profiles, the overall convergence time for the algorithm in this run
was much larger, being one of the slowest modes. Moreover, the engine showed severe difficulties
in creating consistent groups. (In general this seems to be a characteristics of all the modes that
lacked the phylogenetic profiles objective function). This mode was able to consistently detect
8 operons. In our third run we used both objective functions. This time around the algorithm
was able to correctly identify over 15 operons, including the dnaK operon (made up from dnaK
(COG0443) and dnaJ (COG0484), the group is shown in Table 4.2. It was also able to identify
the carAB operon and the fixABC operon, in addition to the ones discovered by the previous al-
gorithms and 10 others, which shows the robustness of the algorithm since some of these operons
have considerable distance in terms of their phylogenetic profile but they are near each other in
terms of their directionality and viceversa, completing each other in its space search. The overall
table of results can be checked in Table 4.1

As we can see, while k-means has an arguably better performance than MOCEA when we use
low levels of information, it is as we increase the biological data available to our algorithms that
the strength of multi-objective optimization becomes more dominant, for the performance gain in
each step is clear.

52

Table 4.1: Results chart

Mode Operons Found DIP-EcoCyc
PP 22 61
ID 14 37

PP & GD 90 88
PP & ID 110 87
ID & GD 20 58

PP & ID & GD 125 100
All with cross-over 30 50
k-means with PP 45 103
k-means with ID 47 78
k-means with both 46 85

Total 442 346

Table 4.2: Excerpt from the group where the DNA biosynthesis operon is located

p1 COG0576 01110011111111111111111111 -010–10000010101101111001
p2 COG0210 01110011111111111111111111 -110–00011011010001101111
p3 COG0484 01110011111111111111111111 -010–01000010001100010001 dnaJ
p4 COG0443 01110011111111111111111111 -010–01100011111101100000 dnaK
p5 COG0190 01010011111111111111111111 -1-0–10101000101100111000
p6 COG0166 01110111111111111111110111 -101-10011010101111001-001

5. CONCLUSIONS

Throughout this thesis work we have presented and demonstrated the viability of using multi-
objective clustering genetic algorithms as a tool to infer protein-protein interactions. In the first
approach we successfully proved that single objective clustering genetic algorithms, as a stan-
dalone technique is a good but not sufficient method to infer these types of interactions. Expressing
phylogenetic profiles as a minimization problem was simple enough to use as a fitness function.
In terms of the operators we used we inherited some of the operators that Falkenaeur first defined
when he introduced clustering genetic algorithms, like randomly creating and destroying groups,
and we defined some of our own, like merging groups whose centroids were particularly near, de-
stroy those whose variance within its members was too big and searching and rearranging outliers
within the clusters. We remained fairly classical in terms of the general structure of the rest of the
algorithm, like using a random initialization, and using tournament as a selection function, since
preliminary results showed that the algorithm gave better results through such procedures.

However, as we could appreciate there were still some glaring deficiencies in the method. One
of the most notorious was that the first version of our model tends to make cluster that are too
general (like in Table 3.13). As such, we need other methods that allow the algorithm to both be
able to better discern the characteristics that make a group of proteins functionally related, and that
allows for a level of control over the level of abstraction of the algorithm.

We then hypothesized that including more biological data in the form of expanding the fitness
function as a multi-objective genetic algorithm would increase the quality of the results. As such
during the second part of this thesis we demonstrated our initial hypothesis that considering ad-
ditional sources of genomic data related to our biological problem has a definite positive effect in
discovering patterns that are both computationally coherent in terms of the principles of clustering,
and that have a real Biological significance. We introduced three additional functions, intergenic
distance, genomic context and cluster size. The first two addressed the first problem we mentioned

53

54

in the previous paragraph, in that we provided our framework with the information it needed to
improve the significance of the clusters it created. The other one, cluster size, while it was an
artificial fitness function, at the same time it was a way that allowed us to have a degree of control
over the clustering abstraction we desired from our method.

In terms of the rest of the genetic algorithm components, we inherited most of the ones that
we had used in the previous iteration of our program, except for the selection function. Instead of
the tournament selector we had previously employed, we constructed a niched pareto tournament
scheme[23]. The methods related to the Pareto front are the most used by the community[19],
and as such its effectiveness has been repeatedly tested by the community. The niche technique
developed by Horn et. al. allows for a more comprehensive construction of the Pareto front, and
as such we are guaranteed a better array of solutions.

Results demonstrated that the algorithm progressively produced better results as we introduced
more and more biological information. It has often been asserted by many Biologists that the best
computational algorithms should be able to obtain the best possible results with a minimum amount
of information. However it is our belief that in realms as vast as Molecular Biology we should be
able to incorporate into our algorithms as much available data as possible in a way that our methods
are able to organize and make sense of all this data, and as such obtain a more rich, and meaningful
result. The algorithm also retains the other benefits that its previous proposals possessed[9], like
that of requiring minimal input data, and being able to evolve its own parameters over time (like
the group size, which is a major problem with many clustering algorithms).

We believe that the proposed method can be generalized to problems outside of Biology. It is
important to consider as much contextual information when designing a data mining algorithm as
it is possible, in any kind of problem. It is often the case that as computer scientists we lose sight
of the context information of our problem, and concentrate on making a computationally coherent
model that is often too minimalistic, or lack the capability to be further expanded so that it becomes
increasingly equivalent to the reality that we want to model.

The model we presented throughtout this thesis approximates this problem by allowing us to
build a framework where it is extremely easy to introduce new optimization data into an existing
search method. Further study on the applications of these type of algorithms in relationship to the
data mining of biological data should be of great interest to the community.

Moreover, the fact that the algorithm requires minimal input is another tremendous advantage.
Not even the number of groups is of great importance, since this is evolved by the algorithm itself.
As mentioned before, when running this type of protein function discovery algorithms, we do not
possess much more information other than the bare minimum provided by the problem, much
less specific information like the number of groups, the distance between the centroids of each
group and other factors classical grouping algorithms tend to ask for. As such this is something
we traditionally determine either by using some other heuristic that will try to approximate these
values, or by mere trial and error in the worst case scenario.

Returning to our problem, it is also important to note that despite the multi-objective system
working better than its single objective and non genetic algorithm counterparts, there is still a big
number of operons that our algorithm fails to classify, including the widely known lac operon.

55

It is our belief that introducing further biological data would help in the algorithm being able to
discover all these relationships, all the while its ability to detect false positives would also increase,
leading to more biological coherent clusters.

In summary from the computational side this algorithm can be considered as a comprehensive
approach within the evolutionary algorithms community. We are successfully combining tech-
niques from the parallel, multi objective and clustering divisions of genetic algorithms Since our
problem was inherently a clustering problem, the usage of the clustering division was a given.
Our first approach using phylogenetic profiles demonstrated that genetic algorithms was a viable
method for protein protein interaction prediction, however the results weren’t as comprehensive
and informative as required. As such we introduced a multi objective scheme that allowed us to in-
crease the quantity of data the fitness functions could fit in, leading to a better performance against
our benchmark database. Parallel genetic algorithms were introduced as a means to speed up the
algorithm.

On the biological side, we successfully constructed a framework that is able to predict protein-
protein functional interactions using multiple and varied biological data in an a priori fashion. To
the best of our knowledge this is the first time that genetic algorithms have been used to predict
protein-protein information in a way that allowed us to introduce as much biological data as we
desired, as long as it could be expressed as a minimization/maximization problem. We believe that
this method could provide a foundation stone for a comprehensive framework that combines all
the protein protein prediction methods known to the community.

5.1 FUTURE WORK

There are several lines on investigation that can be taken from where our algorithm is at this
moment.

On the computational front we are interested on further speeding up the algorithm by using dif-
ferent methods from the parallel computing community. While we applied global parallel genetic
algorithms in this thesis work as a means to accelerate the computation time, we are interested in
implementing the algorithm in a parallel framework. This can be approached through two means.
One is to build a distributed cluster, and to create an island genetic algorithmic framework. In a
distributed cluster system we have a series of interconnected computer nodes, which have the char-
acteristic of each node having a relatively strong computer power, however the communication bus
is relatively slow. In this kind of architectures, normally the communication step is the bottleneck
of the algorithm. As such an architecture such as island genetic algorithm, which evolve each is-
land, or each population independently, and just “migrates” a small number of individuals between
islands is ideal for this kind of setup.

A second approach would be applying our algorithm to a GPGPU architecture. This is ex-
plained in further detail in Appendix A.

We could also use modern alternatives to evolutionary algorithms that have demonstrated good
results in other areas, like particle swarm optimization[42], or differential evolution[43].

56

5.1.1 OTHER COMPUTATIONAL IMPROVEMENTS

Another interesting research path would be incorporating ideas from the messy genetic algorithms
framework [16]. The main idea in messy genetic algorithms is to take a bottom up approach
towards the formation of the final solution. Roughly speaking, it divides the population into several
populations which concentrate on the formation of a particular “building block”, or partial solution.
In terms of the Pareto optimum, it could be understood as several building blocks specialized in
the construction of a particular section of the Pareto optimum. This could be achieved by giving
preference, in different degrees, to our several fitness functions for each of the subpopulations. We
believe that this approach would lead both to a more comprehensive formation of the Pareto front,
and to a faster genetic algorithm when combined to the parallel approach described earlier.

5.2 BIOLOGICAL FUTURE WORK

We have made clear that this framework is specifically designed for it to be easy to construct an in-
creasingly complex and comprehensive fitness function. MOCEA allows for any type of biological
parameter to be introduced into the algorithm as long as it can be expressed as a minimization or a
maximization problem. For example, phylogenetic profiles, and transcription directionality can be
expressed as a minimization of the variance between the profiles of a group. Intergenetic distance
can be expressed as a minimization of the distances in the genome among the proteins in a cluster.
In the same way, we could consider other type of optimization functions related to the genetic
context of our proteins. For example, we could consider the evolutionary distance between the dif-
ferent species we are analyzing. If a set of proteins is conserved among a group of species which
are genetically close, it may not tell us much information about the functional relationship between
these proteins, given that the conservation of certain genetic patterns could be mere coincidence.
On the other hand, if we observe the same conservation pattern on species whose evolutionary
history diverged a great time ago, and who are only loosely related, then we can have a greater
confidence on the kind of patterns we find between these two species. As such, we can express our
species through a distance graph, and we can insert a new optimization function which will seek to
maximize the distance between the members of a clusters, such that clusters that only find patterns
between similar species have less value than clusters that manage to find patterns across a wide
arrange of species.

This is just an example for the kind of biological functions that could be inserted in the frame-
work. We could also use protein microarrays. These are measurements devices normally used in
biomedicine and biostatistics to determine the presence and amount of certain type of proteins in a
given sample. Similarly to how we can extract statistical data from phylogenetic profiles, the same
principle could be applied to microarrays.

When the algorithm is more mature in terms of the biological information it considers, it would
also be extremely indicative to perform more thorought benchmarks with respect to similar com-
prehensive methods, such as voting methods or Bayesian networks.

BIBLIOGRAPHY

[1] FIERS, W., CONTRERAS, R., ET AL. Complete nucleotide sequence of bacteriophage ms2
rna: primary and secondary structure of the replicase gene. Nature 260, 5551 (1976), 500–
507.

[2] ADAMS, M., FLEISCHMANN, R., ET AL. Whole-genome random sequencing and assem-
bly of haemophilus influenzae rd. Science 269, 3 (1995), 469–512.

[3] BORK, P., DANDEKAR, T., DIAZ-LAZCOZ, Y., EISENHABER, F., HUYNEN, M., AND
YUAN, Y. Predicting function: from genes to genomes and back. Journal of Molecular
Biology 283, 4 (1998), 707–725.

[4] EISENBERG, D., MARCOTTE, E., XENARIOS, I., AND YEATES, T. Protein function in
the post-genomic era. NATURE-LONDON- (2000), 823–826.

[5] PELLEGRINI, M., MARCOTTE, E., THOMPSON, M., EISENBERG, D., AND YEATES,
T. Assigning protein functions by comparative genome analysis: Protein phylogenetic pro-
files. Proceedings of the National Academy of Sciences 96, 8 (1999), 4285.

[6] WU, J., KASIF, S., AND DELISI, C. Identification of functional links between genes using
phylogenetic profiles. Bioinformatics 19, 12 (2003), 1524–1530.

[7] WATANABE, R., MORETT, E., AND VALLEJO, E. Inferring modules of functionally in-
teracting proteins using the Bond Energy Algorithm. BMC Bioinformatics 9.

[8] FERNANDEZ, J., VALLEJO, E., AND MORETT, E. Fuzzy C-means for inferring func-
tional coupling of proteins from their phylogenetic profiles. In Computational Intelligence
and Bioinformatics and Computational Biology, 2006. CIBCB’06. 2006 IEEE Symposium on
(2006), pp. 1–8.

[9] TAPIA, J., AND VALLEJO, E. A clustering genetic algorithm for inferring protein-protein
functional interactions from phylogenetic profiles. In Evolutionary Computation, 2008. CEC
2008.(IEEE World Congress on Computational Intelligence). IEEE Congress on (2008),
pp. 2757–2763.

[10] VON MERING, C., JENSEN, L., KUHN, M., CHAFFRON, S., DOERKS, T., KRUGER, B.,
SNEL, B., AND BORK, P. STRING 7–recent developments in the integration and prediction
of protein interactions. Nucleic Acids Research 35, Database issue (2007), D358.

[11] GIBSON, G., AND MUSE, S. V. A Primer of Genome Science. Sinauer, 2005.

[12] FALKENAUER, E. Genetic Algorithms and Grouping Problems. John Wiley & Sons, Inc.
New York, NY, USA, 1998.

57

BIBLIOGRAPHY 58

[13] SELBACH, M., AND MANN, M. Protein interaction screening by quantitative immunopre-
cipitation combined with knockdown (QUICK). Nature Methods 3 (2006), 981–983.

[14] LIN, C., AND WANG, M. Predicting protein function by genomic context: quantitative
evaluation and qualitative inferences. Genomic Research 10, 8 (2000), 1204–1210.

[15] TATUSOV, R., FEDOROVA, N., ET AL. The cog database: an updated version includes
eukaryotes. BMC Bioinformatics 4 (2003), 41–54.

[16] GOLDBERG, D. E. Genetic algorithms, in search, optimization, and machine learning.
Addison-Wesley, 1989.

[17] ENGELBRECHT, A. Computational Intelligence: An introduction. Wiley, 2007.

[18] HOLLAND, J. Adaptation in Natural and Artificial Systems. An introduction. University of
Michigan Press., 1975.

[19] COELLO COELLO, C., ET AL. Evolutionary Algorithms for Solving Multi Objective Prob-
lems. Kluwer Academic Publishers, 2002.

[20] DEB, K., PRATAP, A., AGARWAL, S., AND MEYARIVAN, T. A fast and elitist multiob-
jective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation 6, 2
(2002), 182–197.

[21] ZITZLER, E., LAUMANNS, M., THIELE, L., ET AL. SPEA2: Improving the strength
Pareto evolutionary algorithm. In EUROGEN (2001), pp. 95–100.

[22] SARENI, B., AND KRAHENBUHL, L. Fitness sharing and niching methods revisited. Evo-
lutionary Computation, IEEE Transactions on 2, 3 (1998), 97–106.

[23] HORN, J., NAFPLIOTIS, N., AND GOLDBERG, D. Multiobjective optimization using the
niched pareto genetic algorithm. Urbana 51 (1993), 61801–2996.

[24] WU., F. Genetic weighted k-means algorithm for clustering large-scale gene expression data.
BMC Bioinformatics 9, 6 (2008).

[25] LIN, C., AND WANG, M. Genetic-clustering algorithm for intrusion detection system. In-
ternational Journal of Information 2, 2 (2008), 218–234.

[26] MILANO, M., AND KOUMOUTSAKOS, P. A clustering genetic algorithm for actuator op-
timization in flow control. In Proceedings of the Second NASA/DoD Workshop on Evolvable
Hardware, pp. 263–269.

[27] CURTEANU, S., LEON, F., AND GALEA, D. Alternatives for Multiobjective Optimization
of a Polymerization Process. Journal of Applied Polymer Science 100, 5 (2006), 3680–3695.

BIBLIOGRAPHY 59

[28] MANDAL, C., GUDI, R., AND SURAISHKUMAR, G. Multi-objective optimization in As-
pergillus niger fermentation for selective product enhancement. Bioprocess and Biosystems
Engineering 28, 3 (2005), 149–164.

[29] SOMEREN, E., ET AL. Multi-criterion optimization for genetic network modeling. Signal
Processing 83 (2003), 763–775.

[30] DEB, K., AND RAJI REDDY, A. Reliable classification of two-class cancer data using
evolutionary algorithms. BioSystems 72, 1-2 (2003), 111–129.

[31] DE SOUTO, M., AND FACELLI, K. Multi-objective clustering ensemble. In Proceedings
of the Sixth International Conference on Hybrid Intelligent Systems (2006).

[32] LLOYD, S. Least squares quantization in PCM. IEEE Transactions on Information Theory
28, 2 (1982), 129–137.

[33] TATUSOV, R., NATALE, D., ET AL. The cog database: new developments in phylogenetic
classification of protein from complete genomes. Nucletic Acids Research 29, 1 (2001), 22–
28.

[34] CIRIA, R., ABREU-GOODGER, C., MORETT, E., AND MERINO, E. GeConT: gene con-
text analysis. Bioinformatics 20, 14 (2004), 2307–2308.

[35] SALWINSKI, L., MILLER, C., SMITH, A., PETTIT, F., BOWIE, J., AND EISENBERG,
D. The Database of Interacting Proteins: 2004 update. Nucleic Acids Research 32, 90001
(2004), 449–451.

[36] KARP, P., KESELER, I., SHEARER, A., LATENDRESSE, M., KRUMMENACKER, M.,
PALEY, S., PAULSEN, I., COLLADO-VIDES, J., GAMA-CASTRO, S., PERALTA-GIL,
M., ET AL. Multidimensional annotation of the Escherichia coli K-12 genome. Nucleic
Acids Research 35, 22 (2007), 7577.

[37] ITOH, T. Evolutionary instability of operon structures disclosed by sequence comparisons of
complete microbial genomes. Molecular biology and evolution 16, 3 (1999), 332–346.

[38] DUESTER, G., CAMPEN, R., AND HOLMES, W. Nucleotide sequence of an Escherichia
coli tRNA (Leu 1) operon and identification of the transcription promoter signal. Nucleic
Acids Research 9, 9, 2121–2139.

[39] JENSEN, L., KUHN, M., ET AL. String 8–a global view on proteins and their functional
interactions in 630 organisms. In Pubmed (2009).

[40] TAPIA, J., MORETT, E., AND VALLEJO, E. A Clustering Genetic Algorithm for Genomic
Data Mining. Foundations of Computational Intelligence Volume 4: Bio-Inspired Data Min-
ing (2009), 249.

BIBLIOGRAPHY 60

[41] TAPIA, J., MORETT, E., AND VALLEJO, E. MOCEA: A Multi Objective Clustering Evo-
lutionary Algorithm for Inferring Protein-Protein Functional Interactions. In GECCO 2009
(2009).

[42] ENGELBRECHT, A. Fundamentals of computational swarm intelligence. John Wiley &
Sons, 2006.

[43] PRICE, K., STORN, R., AND LAMPINEN, J. Differential evolution: a practical approach
to global optimization. Springer, 2005.

[44] SCHATZ, M., AND TRAPNELL, C. Fast exact string matching on the gpu. Center for
Bioinformatics and Computational Biology (2007).

IMPLEMENTING THE FITNESS
FUNCTION ON A GPU

GPGPU refers to a relatively novel approach where we take advantage of the highly parallel com-
puting capabilities of the graphics processor unit for tasks other than graphics related ones. GPGPU
has saw great success in many different areas, and Bioinformatics is no exception. In [44], a string
matching algorithm, one of the most common type of problems in gene analysis, was successfully
ported to the GPU, meeting a 35x performance increase in terms of the computing time spent to
find the desired string. We have already succeeded in implementing the phylogenetic profile fit-
ness function in the GPU as a test case, and the construction of a distance matrix between all the
phylogenetic profiles in our database.

The first task that has to be appointed is the construction of the distance matrix. The process
starts by copying the list of phylogenetic profiles into a n ×m texture, where n is the number of
profiles andm the length of each of them, as can be seen in Table 3. The output matrix is computed
according to the pseudocode 5, which will result in a n × n distance matrix, being n the number
of phylogenetic profiles we possess. i and j refer to the number n of phylogenetic profiles we are
going to evaluate. k refers to all the species in our phylogenetic profile. A reduction operators
refers to reducing a set of values (a vector of values) to a single value through a binary operator.
In this case, a sum, since we want to obtain the addition of all the xor’s. (For example, a reduction
of the vector 3 4 5 using the binary operator ADD would be 12, since 12 is the sum of 3,4 and 5.
Reduction is one of the fundamental operations of the parallel computing paradigm)

Algorithm 5 Kernel for the computation of a distance matrix

for concurrently each i in inputTexture do
1:2: for concurrently each j in inputTexture do

3: for concurrently each k in species do
4: tempk =ik xor jk
5: end for
6: distanceMatrix(i,j) = Perform a reduction over all tempk

7: end for
8: end for

As it was mentioned earlier, the computation of such a table is quite difficult to do through direct
means on a CPU, given the very big size of the structure and the massive quantity of computations.
On the other hand, such a task is almost trivial to do on the GPU, as this size can be easily mapped
and stored on a texture. Moreover, the operations required to buildup the data (a series of XOR’s)
are very similar and repetitive in nature, perfect to be delegated to the GPU. As such it is clear
why this fitness function should be done on an architecture designed for parallel computations.

BIBLIOGRAPHY 62

Table 1: Input Texture

n/m 0 1 2 3 4

0 1 1 0 1 1
1 1 1 1 0 1
2 1 0 1 1 1
3 1 1 0 0 0
4 1 1 1 1 1
5 1 1 1 0 1

Table 2: Output Texture

n/m 0 1 2 3 4 5

0 0 2 2 2 1 2
1 2 0 2 2 1 1
2 2 2 0 1 1 1
3 2 2 1 0 3 2
4 1 1 1 3 0 1
5 2 1 1 2 1 0

An example of the input texture structure is shown in Table 1, and the resulting distance matrix is
shown in Table 2

After this table is built up is when the program is ready to receive input data from the genetic
engine, evaluate each group it receives according to the distance matrix and return an array with
the fitness it calculated for each group. The fitness it calculates is defined by the algorithm 6.

So it will compute the distance of all the members of a group against the rest of the members
within the group, and return the sum of these values. Again, despite this being a simple set of
operations, the number of times it has been done is simply too large (approximately 20000 times
per generation), and the repetitive nature of the operation perfectly suits the requirements of this
process.

The time comparison of the GPU and CPU implementations are shown in Table 3
Our algorithm showed to take advantage of the parallel capabilities of the graphic card. Table

3 shows a comparison of the computing time it takes to do the same operations in both the CPU
and the GPU. Despite the GPU implementation having to compute a look up table, this is only a
one time operation which significantly benefits the computing time of the GPU in the long run.
The CPU takes nearly 250 times as much as our GPGPU algorithm to perform the same simple
table filling function. Although the performance improvement is astonishing, it could be argued
that since this is a one time process it is of little relevance when taking into account the total

BIBLIOGRAPHY 63

Algorithm 6 Kernel for obtaining the distance values

for concurrently each i in inputTexture do
1:2: for concurrently each j in inputTexture do

3: distanceStructure(i,j) = tex(i,j) {build the intermediate

structure}
4: end for
5: end for
6: for concurrently each i in inputTexture do
7: Apply a reduction function to the intermediate structure

8: end for

Table 3: Time comparison

Operation/Device GPU(ms) CPU (ms)

distance matrix construction(3307 elements) 321.47 95093.835938
Group comparison(500 groups) .499(ms) 50

Group comparison(6000 groups) .537(ms) 682.5

time. In consequence, of much more significance is the difference seen in the computation of the
distance fitness function in each generation. While the GPU algorithm shows an excellent running
time (half a millisecond) with good scalability (seeing close to no increase in running time when
increasing the groups to evaluate tenfold), the CPU algorithm shows a much bigger running time,
taking more than 10ms in evaluation time per group, making it a not so scalable algorithm.

However, these two were only implemented as a test case, and were not integrated to the whole
algorithm framework. It would be a future investigation line to port the whole algorithm to run
under a GPGPU framework, and to compare the performance. It has already been shown that most
of the critical functions show a high degree of parallelization, so we should be seeing a big leap in
the algorithm, performance wise.

