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Abstract. This paper reports the results of a system that performs
network anomaly detection through the use of Hidden Markov Models
(HMMs). The HMMs used to detect anomalies are designed and trained
using Genetic Algorithms (GAs). The use of GAs helps automating the
use of HMMs, by liberating users from the need of statistical knowl-
edge, assumed by software that trains HMMs from data. The number of
states, connections and weights, and probability distributions of states
are determined by the GA. Results are compared to those obtained with
the Baum-Welch algorithm, proving that in all cases that we tested GA
outperforms Baum-Welch. The best of the evolved HMMs was used to
perform anomaly detection in network traffic activity with real data.
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1 Introduction

Security threats for computer systems have increased immensely which include
virus, denial of service, vulnerability break-in, etc. While many security mech-
anisms have been introduced to undermine those threats, none can completely
prevent all of them. Security threats to the computer systems have raised the
importance of anomaly detection [1] .

Anomaly detection is the process of monitoring the events occurring in a
computer system or network and analyzing them for signs of anomaly. Anomaly
is defined as attempts to compromise the confidentiality, integrity, availability,
or to bypass security mechanism of a computer or network.

Hidden Markov Models (HMMs) are considered a basic component in speech
recognition systems. Besides, HMMs are based on a probabilistic finite state
machine used to model stochastic sequences [2]. HMMs have many applications
in signal processing, pattern recognition, speech and gesture recognition, as well
as applications to anomaly detection.

It is important to mention that in an HMM, the estimation of good model
parameters affects the performance of the recognition [3] or detection processes.
The HMM parameters can be determined during an iterative process called



2 Evolving HMMs for Network Anomaly Detection

“training”. The Baum-Welch algorithm [4] is one method applied in setting an
HMM’s parameters, but this method has a drawback. The Baum-Welch algo-
rithm, being a gradient-based method, may converge to a local optimum.

Global search techniques can be used to optimize an HMM’s parameters.
Genetic Algorithms (GAs) are a global optimization technique that can be used
to optimize an HMM parameters [3].

GAs are a searching process based on the laws of natural selection and ge-
netics. It emulates the individuals in a natural environment that the natural
selection mechanism makes the stronger individuals likely winners in the com-
peting environment. Studies of using GAs to train HMMs are relatively rare,
particularly in comparison with the large literature on applying GAs to neural
network training [2].

In this paper we present the use of GAs for creation and optimization of
an HMM on one step, from a time series data. And then this model is used
for anomaly detection for network traffic. And finally, we compare the perfor-
mance of HMMs created with GA against other created with the Baum-Welch
algorithm.

The remainder of the paper is structured as follows. Section 2 introduces the
related HMM theory. Section 3 describes GAs for readers not familiar with the
topic. Section 4 describes Intrusion Detection theory. Section 5 is the base of
the proposal of this paper. Section 6 illustrate the results on comparison HMMs
created with GAs against other created with the Baum-Welch algorithm. Section
7 is a brief overview of some approaches and uses of HMMs for anomaly detection
and GAs used for optimizing an HMM´s parameters. Section 8 presents our
conclusions and future work.

2 Hidden Markov Models

An HMM is a doubly stochastic process with an underlying stochastic process
that is not observable, but can only be observed through another set of stochas-
tic processes that produce the sequence of observed symbols. The most common
application of HMMs, which are best known for their contribution, is in auto-
matic speech recognition, where HMMs were used to characterize the statistical
properties of a signal [5], [4].

Also, HMMs have been working in the bioinformatic area. Recently, HMMs
have been applied to a variety of applications outside of speech recognition, such
as handwriting recognition, pattern recognition in molecular biology, and fault
detection. Variants and extentions of HMMs include econometrics, time series,
and signal processing [6].

An HMM is formed by a finite number of states connected by transitions (see
Fig. 1), which can generate an observation sequence depending on its transition,
and initial probabilities. That means an HMM is represented by a set of three sets
of probabilities (initial state probability, transition between states probability,
and the probability to observe a symbol in each state). The Markov Model is
Hidden because we do not know which state led to each observation.



Evolving HMMs for Network Anomaly Detection 3

An HMM is defined, among others, basically for these three parameters:
A = {aij} is the state transition probability matrix.
B = {bj(k)} is the emission probability matrix, indicating the probability of

a specified symbol being emitted given that the system is in a particular state.
Π = {πi} is the initial state probability distribution.

Fig. 1. An HMM example with 4 states.

An HMM can therefore be succinctly defined by the triplet [7]:

λ = {A,B, π} (1)

There are three basic problems of interest that must be solved for the HMMs
to be useful in real-world applications. Mainly HMM applications are reduced
for solving three kinds of problems:

1. The probability of a given observation sequence has been generated by λ.
2. The highest-probability state sequence for a given observation sequence and

a λ.
3. The adjust or re-estimation of model parameters λ.

HMMs deal with these problems, described above, under a probabilistic or sta-
tistical framework. HMMs offer the advantages of having strong and powerful
statistical foundations and being computationally efficient to develop and evalu-
ate due to the existence of established training algorithms. But one disadvantage
of using HMM is the need for an a priori notion of the model topology. That
is, in order to build an HMM we must first decide how many states the model
will contain and what transitions between states will be allowed. Once a model
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structure has been designed, the transition and emission parameters need to be
estimated from training data.

The Baum-Welch algorithm is used to train model parameters. The Baum-
Welch algorithm is an iterative expectation-maximization algorithm that given
an initial parameter configuration, adjusts model parameters to locally maximize
the likelihood of data. Baum-Welch training suffers from the fact that it finds
local maxima, and is thus sensitive to initial parameters settings. For further
information on HMMs, please see [4].

3 Genetic Algorithms

HMMs parameters are determined during an iterative process called “training”.
One of the conventional methods applied in HMM model parameter values is the
Baum-Welch algorithm [4]. One drawback of this method is that it converges to
a local optimum. Global search techniques can be used to optimize an HMM
parameters. Genetic Algorithm (GA) is a global optimization technique [8], [3]
that can be used to optimize the HMM parameters [3].

GAs simulate evolution phenomena of nature. The search space is mapped
into a genetic space. The possible solution is encoded into a vector (chromosome),
and each element of the vector is called gene. Through continually calculating the
fitness of each chromosome, the best chromosome is selected and the optimization
solution is obtained [9].

The GA is a robust general purpose optimization technique, which evolves
a population of solutions. GA is a search technique that has a representation of
the problem sates and also has a set of operations to move through the search
space [3].

Selection, crossover, mutation are three main operators of GA, and individual
is the objection of operation. These constitute the whole genetic process, making
GAs have good characters which other classic methods do not have. You can find
the general steps of a GA in [9].

4 Anomaly Detection

Anomaly detection is performed by detecting changes in the patterns of uti-
lization or behavior of the system. Anomaly detection may be performed by
building a statistical model that contains metrics derived from system operation
and flagging as intrusive any observed metrics that have a significant statistical
deviation from the model [1]. In other words, an anomaly detection uses a model
of “normal” network behavior to compare to currently observed network behav-
ior. Any behavior that varies from this model is considered a network anomaly
and behavior closely matching the model is “normal”. In general, the normal
behavior of a computing system can be characterized by observing its properties
over time.

The problem of detecting anomalies can be viewed as filtering non-permitted
deviations of the characteristic properties in the monitored network systems [10].
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Anomaly detection can also be defined as the process of identifying malicious
behavior that targets a network and its resources [11].

Anomaly detection research is carried out in several application domains,
such as monitoring business news, epidemic or bioterrorism detection, intrusion
detection, hardware fault detection, network alarm monitoring, and fraud de-
tection. The anomaly detection problem involves large volumes of time series
data, which has a significant number of entities and activities. The main goal of
anomaly detection is to identify as many interesting and rare events as possible
with minimum delay and the minimum number of false alarms [12].

5 A Framework for Evolving an HMM

In this section we propose a framework for evolving an HMM parameters. The
evolution process consists of:

– A population of chromosomes. One chromosome is constituted as shown in
Fig. 2. These genes are described as:
1. Fitness. This is its fitness evaluation, after been evaluated by the objec-

tive function (see Equation 2).
2. Size. Number of states of the HMM.
3. Number of States. This is a list of number of elements.
4. Transitions. This gene has the probability transitions among the states

of the HMM (Fig. 3).
5. Parameters. This gene has the Mean and Variance of a Gaussian distri-

bution function of each state in the HMM (Fig. 4).
6. Pi. The last set of genes represents the probability of state Si to start at

time t = 1 (Fig. 5).

Fig. 2. The representation of a Chromosome for evolving HMMs.

Where the chromosomes are the encoded form of the potential solution. Ini-
tially, the population is generated randomly and the fitness values of all chro-
mosomes are evaluated by calculating the objective function (Equation 2). This
is the Forward variable α that calculates P (O|λ) [4], probability that the obser-
vation sequence had been generated by model λ (equation 1).

P (O|λ) =
N∑

i=1

αT (i), (2)
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Fig. 3. Representation of a Transitions Gene of the HMM’s Chromosome.

Fig. 4. A probabilities Gene of an HMM’s Chromosome.

Fig. 5. A Pi Gene of an HMM’s Chromosome.
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– After the initialization of the population pool, the GA evolution cycle is
begun. At the beginning of each generation, the mating pool is formed by
selecting some chromosomes from the population. This pool of chromosomes,
is used as the parents for the genetic operations to generate the offspring.
The fitness values of offspring are also evaluated. Each offspring is a complete
HMM, so the system calculates how good this model is with respect to the
observation sequence, so we compute its probability and assign this value as
its fitness. That is, the topology with the maximum value of likelihood is
considered as the best topology.

– At the end of the generation, some chromosomes will be replaced by the
offspring, maintaining a total population of constant size across generations,
preserving offspring and parents with the best fitnesses.

– This GA is setup to apply some evolutive operators like mutParams (makes
a mutation of parameters values mean and variance), mutTransition (mu-
tation or changes of probability values on transition links among states),
delTransition (deletes a state transition), addTransition (adds a new state
transition), Copy (copies a complete chromosome or HMM), addNode (adds
a new node to the model), delNode (deletes a node from the model). This
GA builds HMM models ranging from 3 to 15 states. The Mean and Vari-
ance are randomly initialized and evolution is driven by mutation magnitude
parameters.

– The above generation and genetic operations are repeated until the cycle
gets the maximum number of generations. By emulating the natural selec-
tion and genetic operations, this process will hopefully determine the best
chromosomes or the highly optimized solutions to the problem.

Once GA has finished to evolving an HMM, we take the best model of the last
generation and used it to determine if a given observation sequence has anomalies
or not. Our new statistic model can examine new observation sequences and
determine if a time series of data belongs to this model. That is, if the observation
are likely to have been produced by the model. If the observations have a low
probability of belonging to the model, it is possible that the sequences present
an anomaly.

As we can see in Fig. 6, we have an HMM evolved with GAs. This HMM was
evolved based on the observation sequence given by the bandwith used.

The HMM generated and optimized by GAs, is a great help to detect sta-
tistically anomalous behavior; its function is to detect anomalous behavior and
discriminate over a normal one. HMMs focus on statistics-based anomaly detec-
tion techniques. We built a statistics-based normal profile and employed statisti-
cal tests to determine whether observed activities deviate significantly from the
normal model.

The models generated by GAs analyse incoming time series data, on a sliding
time window, and they can detect anomalous behavior or not. The way they
analyse an observation sequence is based on deviation from average behavior.
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Fig. 6. An HMM Evolved by GAs.

6 Results

This section presents the results of our proposal and compares them with those
obtained using the Baum-Welch learning algorithm. We also present the results
of using HMMs in anomaly detection.

6.1 HMMs Produced by GAs

Our system evolves HMMs using GAs, with different number of generations and
different population sizes. Table 1 describes several examples of HMMs evolved
with GAs. The second column of Table 1, shows each model’s probabilities for
the observation sequence. We selected our HMM from these evolved models.
We took the model with the highest probability, and used it in our anomaly
detection tests.

Fig. 7 shows how GAs evolve HMMs; each subfigure shows the best individual
of corresponding generations. a) Generation 1, produced an HMM with 14 states.
b) generation 5, has evolved to 13 states, c) generation 10, HMM has 12 states,
d) generation 11, evolved to 11 states, e) in generation 85, has an HMM with
10 states, and f) presents the final HMM evolved with states and transitions. In
the last generations, GA has already come to an optimum number of states and
focuses on refining the transition probabilities.

Regarding our results, we observed the following points:
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Table 1. Several HMM Models Evolved by GAs.

Number of States P(O | λ) Population Number of Generations

5 7.70688 x 10−103 500 500

5 7.70688 x 10−105 500 250

6 2.52091 x 10−75 250 250

6 7.19032 x 10−98 200 50

8 1.19399x 10−88 1000 500

Fig. 7. Evolving an HMM with GAs.
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– GA does not assume the user to possess any background knowledge about
statistics and probabilities. GA does everything, creates and optimizes an
HMM based on the time series data and a probabilistic function to qualify
that sequence.

– All this method needs is a time series data, a fitness function, and time for
processing the learning method.

– GA builds an HMM with all the required parameters.
– The Baum-Welch algorithm is a good method for learning using time series

data, but its problem is that it converges to a local optimum.
– Another problem that the Baum-Welch algorithm presents, is that users need

a previous background or knowledge about HMMs theory and how to build
it.

– The Baum-Welch algorithm’s performance depends a lot on good HMM
parameters to re-estimate them.That is, if we give it bad parameters, the
method may diverge.

6.2 Baum-Welch Learning

In Fig. 8 we show an HMM structure created with random values. Then we took
this HMM and we training it with the Baum-Welch algorithm and we obtained
a reestimated HMM. This HMM was trained also, based on the observation
sequence given by the bandwith used. A HMM is obtained with the Baum-Welch
algorithm training in 50 iterations, as you can see in Fig. 9.

Fig. 8. HMM created with Random Values, before Trainning.
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Fig. 9. HMM trained by Baum-Welch Algorithm.

Table 2 describes our tests and results. We created several HMMs and rees-
timated their parameters using the Baum-Wech algorithm, trying to get better
probabilities for our models. We started with a 3-state HMM as you can see in
the first column of Table 2. The second column, labeled P(O | λ1), shows the
probability for each model, then we use the Baum-Welch algorithm and we ob-
tained a reestimated model, with a new probability, shown in the third column,
labeled as P(O | λ2). We generated models from 3 to 10 states. In all tests we
performed, we applied the Baum-Welch algorithm for 50 iterations. Our initial
models were built with random values as initial parameters.

These HMMs present low probabilities because they try to represent the
complete likelihood of all observation sequence. It is the probability that this
sequence was given o generated by these HMMs.

Table 2. Several HMM Models trained with the Baum-Welch Algorithm.

Number of States P(O | λ1) P(O | λ2)

3 3.39890 x 10−130 1.8920 x 10−123

4 3.69336 x 10−145 6.44442 x 10−175

5 4.00768 x 10−136 3.43836 x 10−137

6 1.05953 x 10−127 1.07894 x 10−127

7 9.94175 x 10−125 5.90112 x 10−125

8 8.37583 x 10−122 1.09739 x 10−119

9 8.48175 x 10−123 1.22676 x 10−119

10 7.557 x 10−116 6.55885 x 10−172

From our experiments, we realize that the Baum-Welch algorithm needs for
its proper usage:

– An initial number of states.
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– An initial start point (an estimate for transition and starting point proba-
bilities).

– A Probability Distribution function for each state.

As a conclusion, we noted that the models that we created and we reestimated
with the Baum-Welch algorithm did not perform as well as any of the HMM
models created with GA, the probability of the best model is 2.5209 x 10−75

with 6 states. The Baum-Wech algorithm needs the expertise of the users to
create an initial HMM.

We were using Jahmm [13] as our primary tool, but we saw that this tool had
problems calculating probabilities on continuous sequences. So we implemented
the Baum-Welch algorithms in a Mathematica [14].

Table 3 shows the results from an HMM evolved through GA used in anomaly
detection. Our experiments’ setup is the following: given an observation se-
quence, the evolved HMM analyzes a time window of data and it determines
the probability of that sequence having been generated by the model. Our time
window moves to the next item in the time series, which is verified also by the
HMM. And so on, until the whole test time series is traversed and tested. The
window sizes we tested were 3, 4, 5. All these probabilities, generated by the
sliding time window and the HMM, were compared with the probability of the
original sequence and then analyzed to determine if an anomaly exists or not.
Finally, we calculated the ratio between the original and the possibly anomalous
time series for each window. We do not report all that information for the lack of
space. Instead, we report the percentages of hits, false alarms, and unrecognized
anomalies. Table 3 shows these results.

The method we are using to analyze and to determine a possible anomaly
detection is comparing the probability generated by a time window with a cur-
rent time serie, against probability given by a time window trained before with
our HMM. If these probabilities are different, we mean, current time windows
probability are lower, below of our threshold, we flagged as an anomaly behavior.

Table 3. Results of Anomaly Detection using an HMM.

Window %
Size Hits False Positives False Negatives

3 71 2 27

4 77 2 21

5 78 2 20

Our experiments report the best result with a window size of 5, with a 78%
of positive anomaly detection, 20% of false negative detection, and 2% of False
Positive detection. The worst result was produced for window size of 3, with
71% positive anomaly detection, 27% of false negative detection, and 2% of
False Positive detection.
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In all our experiments we used a time series produced by network bandwidth
usage (Fig. 10) in our University. These values recorded bandwidth used for our
department. HMMs training used this serie with 48 values, which corresponds
to bandwidth used in kbit/second in two consecutive days. The values status
fluctuates between 14.625 and 5964.81 kbit/second, considered as a normal be-
havior.

Fig. 10. Network Bandwidth with normal and anomalous behavior.

7 Related Work

Determining the best parameters of an HMM is a hard optimization problem.
The performance of the HMM depends largely on these parameters. There are
research works in this area, applying GAs as a search method to find the best
parameters of an HMM; in this section we mention some of the related work.

We are going to mention some works in GAs aimed to HMM parameter
optimization. Most of these papers are focused to optimize or select a good
model to use it in speech or gesture recognition.

7.1 HMM Selection with GA

In Bhuriyakorn et al. [8] show several approaches that are extensively used for
HMM topology generation. One algorithm predefines rigidly the connectivity
among the states; hence, this algorithm only estimates the numbers of states
and Gaussian mixtures. Another algorithm, Successive State Splitting, begins
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allowing one state transition, and grows from one state to the optimal topol-
ogy. That is, it begins from one state to a complete HMM topology. Another
algorithm is also used, State Reduction starts with a fully-connected topology
with a predefined maximum number of states, and then, it iteratively reduces
a transition until the process terminates. They also describe an algorithm that
uses multiple paths in a single HMM, the idea of this algorithm is to improve
topologies instead of using significant efforts to adjust the single path for better
topologies. Their work focuses basically on the topology selection problem. It is
important to mention that these algorithms focus on the task of Thai phoneme
recognition only.

Ogawa et al. [15], used a well-known simple GA as a new structure optimiza-
tion method in which the dependence of the states and the observation of Partly
Hidden Markov Model (PHMM) are optimally defined according to each model
using the weighted likelihood-ratio maximization.

Won et al. [2] present the use of GAs for evolving HMMs in the prediction
of secondary structure information for protein sequences. This hybrid GA was
run on a cluster of computers as a Parallel Genetic Algorithm. This paper also
mentions that the topology of the HMM was restricted to biologically meaningful
building blocks.

Yang et al. [16] treat the problem of optimizing HMMs’ parameters. First,
they use a GA in order to get into short space solution, where Tabu Search (TS)
is applied as a short term memory, recording in a tabu list genetic operators
used, and offspring generated. So the GATS (GA and TS combined) algorithm
guarantees that GA will not fall in a premature convergence, due to genetic
operator used and offspring generated are recorded in a tabu list and can be
rejected with a probability in future. So, to improve convergence speed of the
GATS-based HMM optimization algorithm, the Baum-Welch algorithm (BW) is
combined with it. Generating the hybrid GATSBW algorithm, which combines
these three elements mentioned above, with the proposes to train HMMs in
continuous speech recognition. This GATSBW algorithm overcomes the short-
coming of the slow convergence speed of the GATS algorithm and also helps the
Baum-Welch algorithm escape from local optimum.

7.2 HMMs Used in Anomaly Detection

In this subsection, we provide a brief overview of some research work about
anomaly detection using HMM, and see how these systems generally work.

Warrender et al. [17] present a method comparisons used in intrusion de-
tection systems. Among these methods analyzed by Warrender and her team,
HMM was analyzed and compared to determine how good was this method used
in anomaly detection. Their conclusion were that the performance of HMM de-
pends on its initial parameters, sometimes depends on the experience of who
creates the HMM. It was hard and took long time to train an HMM, when this
HMM had several states and long observation sequences. But they found that an
HMM, once was trained, was fast to determine the probability of an observation
sequence. They used programs data and call system, as observation sequences.
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Jha et al.[18] present a statistical anomaly detection algorithm based on
Markov Chains. The algorithm they propose can be directly applied for intru-
sion detection by discovering anomalous activities. This algorithm uses the se-
quence of system calls corresponding to a process as the trace of its activity.
The algorithm uses a set of normal system call traces and a statistical model
is constructed, then it is used to construct a classifier capable of discriminating
between normal and abnormal behavior.

Garca et al. [19] present an approach to anomaly detection based on the
construction, hand-designed, of an HMM, trained on processor workload data.
For that, this HMM was used to observe a sequence of processor load measure-
ments, where if the probability of the observation of having been generated by
the model is lower than it was estimated with the HMM, it was considered as
an anomaly.

Khanna et al. [20], discuss an HMM strategy for intrusion detection using
a multivariate Gaussian model for observations that are then used to predict
an attack that exists in the form of a hidden state. They focus in anomaly
detection using users and trends profiles. And any behavior out of this profile is
considered as unusual activity, which is recorded as an observation. Once it has
these observations, an HMM is used to predict a possible intrusion, based on its
hidden states transitions for the most probable intrusion state sequence. These
authors are working on ad hoc architecture, so they need a sensor data which
one collect and analyze data. This HMM based approach (where the HMM is
designed by hand) correlates the system observations (usage and activity profile)
and state transitions to predict the most probable intrusion state sequence.

Singh et al. [12] illustrate the capabilities of HMMs, combined with feature-
aided tracking, for the detection of asymmetric threats (it refers to tactics em-
ployed by subjects to carry out attacks on a superior opponent, while trying
to avoid direct confrontation). This approach combines a transactional-based
probabilistic model with HMMs and feature-aided tracking.

Most of GAs’ work focus on just determining the best HMM’s parameters,
other are focusing on, once obtained the best parameters, applying HMMs to
phonetic or protein sequence research. And most of HMMs used for anomaly
detection, described above, were hand-designed. Hand-design implies implicit
knowledge derived from previous probabilistic experience.

This work has combined two techniques: GAs for optimization HMM’s pa-
rameters, and HMMs used for Anomaly Detection. Once an HMM has evolved
from GAs, we applied it for Anomaly Detection. This approach allows a user to
deploy the system without assuming any background on probability and HMMs
theory.

8 Conclusions and Future Work

In this paper, we outlined a framework for a evolving HMMs used for anomaly
detection. These models generated and optimized by GAs, provide detection
capabilities for anomalous behavior. They are capable of distinguishing between
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normal and abnormal behaviors. Our experiments show that Hidden Markov
Models do well, 75%, over anomaly detection.

Forthcoming experiments include using parallel work on the Baum-Welch
algorithm. We hope in a near future, to compare our method with some others,
like the one used by [17] and determine how good is our system against others.
Finally, we also plan to model several variables to model an HMM.

Our work on HMMs is centered around the task of anomaly detection in a
network bandwidth usage. The models we described in this paper are built from
time series data of bandwidth used, and the models can be employed by our
computer center in a near future.

We expect these improvement to contribute to the development of more accu-
rate models for anomaly detection using HMMs. The next steps are to introduce
time in the HMM models, and generalize them to include observations from more
than one variable.

Nowadays, completely protect a network from attacks is a very hard task;
even heavily protected networks are sometimes penetrated.
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