
An Autonomic Computing Mechanism to Enable
Self-Protection and Self-Healing

Luis M. Fernández-Carrasco, Hugo Terashima-Maŕın, Manuel
Valenzuela-Rendón

{marcelo.fernandez, terashima, valenzuela}@itesm.mx
Tecnológico de Monterrey, Monterrey Campus
Center for Intelligent Computing and Robotics

Abstract. The use of computing systems is nowadays something that is
taken for granted. One just needs to look around and will easily see that
there is a computation process going on in almost every direction. More-
over, now such processes are not just restricted to personal computers
but to devices such as cellular phones, PDAs, laptops, etc. Furthermore,
these devices are not isolated units of processes but are interconnected
and can send and receive information at any time, anywhere. The de-
mands that now people and current business models place on computing
systems go from running a simple application, where the hardware was
not built specifically for such application, to a cooperative network where
all constituents are using a variety of systems and commands. Manag-
ing all these networked devices as a whole in a robust, safe, secure and
transparent manner demands a lot of resources and time.
This article presents the steps that have been taken in order to propose a
new system architecture that ensures the well-being of an IT infrastruc-
ture by providing a self-protection and self-healing autonomic computing
features. The model is a combination of a multiagent design and learning
techniques. The main idea is to mold each component that a typical op-
erating system manages as an agent, incorporate performance criterion
evaluators to select the best candidate to perform a task and implement
specialized agents to supervise and learn from threats and normal pro-
gram executions in order to keep the system running (self-protection and
self-healing).
The system was evaluated using a multiagent simulation. Consequently,
a programming language was created, named HAL, which allowed the
simulation of applications, both benign and harmful, running in the mul-
tiagent environment. Thus, the simulated prototype is very close to a
computer that runs applications, allowing a proper evaluation of the
proposed design.

1 Introduction

It is a fact that computers have invaded today’s world. Everywhere one may look,
it is almost sure that there is a computer executing a calculation or delivering
a service. Moreover, all these small computers are performing various specific

functions in information processing for industrial age devices like cars [1]. These
are known as embedded computer systems and, although less visible, they are
the ones that are being used the most providing easy access to information.
Computers have evolved from single huge machines to modular oriented systems
to personal computers networked with larger machines (i.e., servers) [2]. As a
matter of fact, there has been an incredible progress in almost every aspect of
computing in the last 20 years, microprocessors power up by a factor of 104,
storage capacity by a factor of 45x103, communication speeds by a factor of 106

[3].

Nevertheless, all this great improvement in performance has had a price. The
code that governs all the mentioned systems has grown to millions and millions
of lines and the correct functioning of these systems require the implementation
of even more code, trying to foresee any possible complications or situations the
system may face. As one may assume, this high demand of code also demands a
large number of people. For instance, some operating environments weigh in at
over 30 million lines of code created by over 4000 programmers [3].

As Figure 1 shows, the more technology progresses, the more complex it
becomes to handle the computing systems people rely on. From Figure 1 one can
see that complexity is something inevitable as science is always moving forward,
trying to improve a previous development. This demand for progress is what
makes complexity something that cannot be avoided, systems of components
are built up to the point where they are still manageable and under control; at
this point, they begin to fail and fall below everyday requirements. Computing
systems are always evolving and, thus, in order to move system components up
to the next level, more complex systems are built, and the cycle starts all over
again. This cycle, consequently, is a threat to the well-being of the system (i.e.,
reliability is compromised).

Fig. 1. Reliability versus Complexity

The following sections of this document present the efforts that were followed
in order to provide an alternative to ensure the security of the system by em-
ploying an autonomic computing approach. In other words, by building a system
that would be self-protecting and self-healing. The proposed solution relies on a
multiagent system and it is tested on a simulated environment that was attacked
by programs that were created using the newly design programming language
HAL which allows the simulation of program executions, something similar to
what happens in real IT infrastructures.

2 Related Work

In the last years, autonomic computing has caught the attention of many impor-
tant IT related companies that have started to work on this issue. There is the
IBM Research Autonomic Computing Group, the ones that started this field [4].
Microsoft has also started its own search for autonomic computing, the Dynamic
Systems Initiative, an approach to look for ways to have IT work closely with
business in order to meet the demands of a rapidly changing and adaptable en-
vironment [5]. Planetary Computing is the answer HP Labs have for autonomic
computing combining software development and hardware innovation [6]. Some
other examples, not less important, are Dells Dynamic Computing Initiative,
Hitachi’s Harmonious Computing and Electronic Data Systems’ (EDSs) Agile
Enterprise [7]. Nowadays, more and more companies are actively doing research
in autonomic computing and it is for sure that, in the near future, more will be
involved in such endeavor [8].

Autonomic computing has not only attracted software companies but also
researchers from academia and industry. Consequently, a lot of research has
already taken place in this field. Some selected results and readings for self-
healing are the ones presented by Agarwala and Schwan [9] who proposed a
solution based on system monitoring at very low level; and Zheng et al. [10] who
employed decision trees to detect failure in computing systems.

Representative work in the self-protection area is the work done by Jiang et
al. [11] proposed multi-resolution abnormal trace detection using varied-length
N-grams and automata; Lohman et al. [12] who make use of symptom detection
to find software problems; and Qin et al. [13] who treat bugs as allergies in order
to provide a method that would enable to survive software failures.

The difference between the solution this article presents and the ones men-
tioned lines above is that this document employs a multiagent approach which
allows a decentralized solution to the protection and healing problem. The next
section of this article presents in more detail the proposed solution.

3 Proposed Solution

Self-healing and self-protection are achieved in the proposed system by imple-
menting a new kind of agents called guardians. These agents are in charge to

learn what action or program executions can cause a problem to the system,
prevent such attacks and heal the system once an attack has taken place.

The idea that is employed in this approach is the more, the better which
basically means that if the execution pattern of a process is seen many times, it
is considered to be a benign one. This is based on the fact that users only make
use of a handful of applications and these are used almost constantly. These
executions, then, are normal to the system, whereas, unseen execution patterns
are most likely to be an anomaly. The way the guardian agents perform their
tasks is described in the following lines

3.1 Protection by Learning: Using Online k-means

Given a set of P examples xi, the k-means algorithm computes k prototypes
m = mk which minimize the average distance between each pattern and the
closest prototype. The observations xi, for the present model, are 3-dimensional
Euclidean vectors. The first two components of these vectors make use of a
variation of what a basic block is using the idea proposed by Sherwood et. al.
[14] to characterize programs1. However, these elements are not exactly basic
blocks but a more relaxed concept. The first component is the number of calls
to procedures or functions P =

∑
i pi inside a program execution. The second

component is the number of calls of flow-control structures S =
∑

j sj , i.e., while,

for, etc. The last component is the averaged number of times, C =
P

k ck

N , that
the program has been executed. In other words, the vector’s components are
xt = 〈Pt, St, Ct〉.

When the system starts, it is necessary to initialize mi. This is done consider-
ing that, in average, harmful program executions do not take place so frequently
whereas programs that are valid and safe are executed more times. Based on
this, appropriate values can be given to mi = 〈Pi, Si, Ci〉 and the learning pro-
cess can begin. In other words, mi is initialized with a possible xt entry. This
process is supported by the work conducted by Bottou and Bengio [15].

3.2 Healing the System: Following High-Level Policies

The self-healing features are mainly set by high-level policies, this is so since it is
the business environment that decides how a problem is solved, in other words,
healed.

Basically, whenever a problem is seen, the guardian agent follows a set of rules
in order to provide a solution to the situation. These rules are fired once, thanks
to the guardian agent, the system is moved back to the last known healthy state:

– Stop the execution of the conflicting process.
– Try one more time the execution process of the invalid process.
– Ask for execution of tasks that are needed according to the problem.
– If a solution is not found, this process is banned from any future execution.

1 A basic block is code that has one entry point (i.e., no code within it is the destination
of a jump instruction), one exit point and no jump instructions contained within it.

4 Experimentation & Evaluation

Based on the proposed model, there are some things that have to be setup before
starting any evaluation of the architecture. Accordingly, the following lines of
this section present how these items were initialized.

4.1 Defining the Learning Rate η

In order to achieve convergence in the online k-means algorithm, η has to be
gradually decreased to zero. But this implies the stability-plasticity dilemma
[16]: If η is decreased toward zero, the network becomes stable but adaptivity to
novel patterns that may occur in time is lost because updates become too small.
If ηi is kept large, mi may oscillate.

Following the suggestions provided by Bottou and Bengio [15], the learning
rate was set to be ηi = 1

Ni
where Ni is the number of examples so far assigned

to the prototype mi.

4.2 Defining Initialization Values for Prototypes mi

In order to initialize mi, it was considered that, in average, harmful program
executions do not take place so frequently whereas programs that are valid and
safe are executed more times and are used almost always. People make use
of computers because the programs they run provide a service; the better the
service, the more the program is used.

Following this idea and the suggestions proposed by Bottou and Bengio [15]
mi was initialized with xt entries, assigning a very low value to Ci if the pro-
totype was to represent harmful programs. Similarly, a higher value to Ci was
assigned if the prototype was to represent safe program executions. The pro-
posed values are listed in Table 1, where P is the number of calls to procedures
or functions inside a program execution, S is the number of calls of flow-control
structures, and the last component is the averaged number of times that the
program has been executed.

Table 1. Initialization values for the mi components

Prototype Safe Applications Harmful Applications
Components Prototype Prototype

P 3 2
S 2 3
C 0.7 0.1

4.3 Determining Number of Agents

In order to test the proposed solution, the simulation of small data center was
considered, consequently, one hundred computers were created trying to provide
variability in the simulated data center by having different computer configura-
tions.

4.4 Determining Number and Kind of HAL Programs

In order to test the robustness of the proposed architecture a number of 35 HAL
programs were coded. The objective of these programs is to emulate those that
a person would typically make use of. Of course, there is not a word processor
coded as a HAL program, but all the created programs demand the use of
memory, input/output devices (such as monitors and keyboard inputs), and
the use of the processor, just like a real-life application.

Besides these safe programs, there was the need to code other ones that
would attack the system. These programs basically attempt to destabilize the
system by trying to erase memory segments (for instance, where the module
manifests are stored), provide false or wrong data (e.g., trying to instantiate an
array with negative size), and attack agents by sending ill-formed messages. The
number of created HAL programs with these characteristics was also 35.

4.5 Self-Protection Results

This section presents the results obtained when evaluating the self-protection
capabilities of the proposed architecture.

Figure 2 depicts the averaged learning curve for all three types of computers
that were created for the system. As it can be seen Computer Type 3 learns faster
the applications. This makes sense as this kind of computer agents have more
processor units and processing capability. However, all three types of computers
are able to learn and distinguish the programs quite fast. This is important as
the system should be able to differentiate harmful programs from safe ones.

Consequently, it is important to see how well the proposed system classifies
safe and harmful HAL program instances. This is shown graphically in Figure 3.
The idea of this plot is to see how many safe programs were classified as bad, i.e.,
false positive instances, and how many harmful programs were classified as safe,
i.e., false negative instances. The ideal world should show a very small number
of those two; however, a large number of false positive events only could also be
acceptable.

Figure 3 shows the false positive and negative averaged results for all three
types of implemented computers (the top one chart is for computer type 1, the
middle one is for computer agent 2, and the one at the bottom is for computer
agent 3). As it can be seen, the number of false negative events is smaller that
the number of false positive. This is more evident in the bottom chart where
computer type three is able to improve its classification as it learns more about
the characteristics of the HAL programs that are run.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 50 100 150 200 250

O
bs

er
ve

d
N

ew
 In

st
an

ce
s

Time

Computer Type 1
Computer Type 2
Computer Type 3

Fig. 2. New observed and learnt program instances

A common feature that all three computers show, according to Figure 3 is
that they have more problems classifying the instances at the beginning of the
experiment. This makes sense as the system is just starting to learn.

 0

 1

 2

 3

 4

 5

 6

 7

 0 50 100 150 200 250

P
C

 T
yp

e
1

N
um

be
r o

f E
ve

nt
s

False Positive Events
False Negative Events

 0

 1

 2

 3

 4

 5

 6

 0 50 100 150 200 250

P
C

 T
yp

e
2

N
um

be
r o

f E
ve

nt
s

False Positive Events
False Negative Events

 0
 1
 2
 3
 4
 5
 6
 7

 0 50 100 150 200 250

P
C

 T
yp

e
3

N
um

be
r o

f E
ve

nt
s

Time

False Positive Events
False Negative Events

Fig. 3. Observed false positive and negative classifications

Another factor that was measured in order to see the self-protection capabil-
ities of the proposed architecture was to evaluate the ratio between protection
actions (P) and discovered threats (T); in other words, the result of PT . Depend-
ing on the number that is obtained after that evaluation, on can determine how
well the learning mechanism is protecting the system. The possible results and
their meanings are:

– If P
T = 1 then every single threat is being tackled by the system, i.e., the

system is constantly being protected.

– If PT > 1 then more protection acts than needed are taking place, i.e., there
are more false positive events.

– If PT < 1 then more threats are being considered as safe events, i.e., there are
more false negative instances. The system is not being properly protected.

The obtained results following this metric are presented in Figure 4 as an
example of the obtained results. This figure shows the idea expressed above plus
how distant the protection acts (P) are to discover threats (T). For instance,
the top chart in Figure 4 informs that there is an almost perfect behavior since
P events are overlapping the T ones, with some exceptions at the beginning
of the experiment. However, this plot is better understood when one looks at
the top chart which depicts the ratio P

T . As it can be seen, although there are
moments when one notices false negative instances, the tendency is to have an
almost perfect protection status.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 50 100 150 200 250 300 350

E
ve

nt
s

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 50 100 150 200 250 300 350

R
at

io
 H

ar
m

fu
l P

ro
gr

am
s

vs
 D

et
ec

te
d

O
ne

s

Time

Fig. 4. Relation between threat and protection response for computer type one

4.6 Self-Healing Results

This section presents the last of the wanted self-? properties, self-healing. The
idea here is to see if the system is able to recover by itself from events that
have already damaged some part of their normal functioning. The way this is
accomplished is by following a set of high-level set rules.

In order to measure this capability in the proposed system, three things were
measured, the number of events that required some sort of healing, the number
of those events that were successfully healed following the set guidelines and the
number of the events that could not be healed. The obtained results are shown
in Figure 5.

From this Figure 5 one can infer:

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 20 40 60 80 100 120 140 160 180 200

E
ve

nt
s

Time

Averaged healing-requiring events
Averaged healed events

Averages unhealed events

Fig. 5. Observed events where self-healing was needed.

– The number of events that required healing is rather low and one finds the
most of such events at the beginning of the simulation (——).

– The number of healed instances is high when compared to the number of
observed requiring-healing events (+).

– The number of unhealed events is rather low when compared to the number
of observer requiring-healing instances (×).

5 Conclusions

As it can be inferred from the obtained results, the system is capable to protect
itself by learning from the HAL program instances that each computer sees.
Although in general there are some badly classified events at the beginning of
the experimentation, as time goes by the system is capable to distinguish threats
from safe programs. In other words, the proposed system shows the required self-
? property.

Also, based on the observed results the systems is able to heal itself. How-
ever, there were some events that were not healed and the system was not able to
determine how to proceed. Nevertheless, this is a rather good thing as these are
the instances that would require more studying in order to provide a solution.
Thus, learning from these events in order to be better prepared for future in-
stances. It is this few number of times that IT personnel would be needed to look
into and provide a solution. This means a reduction, in general terms, of human
involvement as most of the administrative tasks have been already handled by
the autonomic service this article proposes; thus, reducing IT troubleshooting.

Acknowledgments

This research was supported by Tecnológico de Monterrey (ITESM), Monterrey
Campus, under the Research Chair CAT-144.

References

1. Bar-Yam, Y.: Unifying Principles in Complex Systems. In Roco, M.C., Bainbridge,
W.S., eds.: Converging Technologies for Improving Human Performance. Kluwer
Academic Publisher (2003) 380–409

2. ComputerHope.com: Computer History Line. http://www.computerhope.com/

history/ (2008) Web Page.
3. Horn, P.: Autonomic Computing: IBM’s Perspective on the State of Information

Technology. Manifesto (October 2001) IBM Research.
4. IBM Research: Autonomic Computing. http://www.research.ibm.com/

autonomic/ (2008) Web Page.
5. Microsoft Corporation: Dynamic Systems Initiative. http://www.microsoft.com/

business/dsi/ (2008) Web Page.
6. Patel, C.D., Bash, C.E., Belady, C., Stahl, L., Sullivan, D.: Computational Fluid

Dynamics Modeling of High Compute Density Data Centers to Assure System
Inlet Air Specifications. In: Proceedings of the Pacific Rim ASME International
Electronic Packaging Technical Conference and Exhibition (IPACK 2001). (2001)

7. Müller, H.A., O’Brien, L., Klein, M., Wood, B.: Autonomic Computing. Technical
Report CMU/SEI-2006-TN-006, Carnegie Mellon University (April 2006)

8. Ganek, A.: Autonomic Computing. http://www.autonomiccomputing.org/ (2008)
Web Page.

9. Agarwala, S., Schwan, K.: SysProf: Online Distributed Behavior Diagnosis through
Fine-grain System Monitoring. In: Proceedings of the 26th IEEE International
Conference on Distributed Computing Systems, IEEE Computer Society (2006)
8–16

10. Zheng, A.X., Lloyd, J., Brewer, E.: Failure Diagnosis Using Decision Trees. In:
Proceedings of the First International Conference on Autonomic Computing, IEEE
Computer Society (2004) 36–43

11. Jiang, G., Chen, H., Ungureanu, C., Yoshihira, K.: Multi-resolution Abnormal
Trace Detection Using Varied-length N-grams and Automata. In: Proceedings of
the Second International Conference on Automatic Computing, IEEE Computer
Society (2005) 111–122

12. Lohman, G., Champlin, J., Sohn, P.: Quickly Finding Known Software Problems
via Automated Symptom Matching. In: Proceedings of the Second International
Conference on Automatic Computing, IEEE Computer Society (2005) 101–110

13. Qin, F., Tucek, J., Sundaresan, J., Zhou, Y.: Rx: Treating Bugs as Allergies - A
Safe Method to Survive Software Failures. In: Proceedings of the Twentieth ACM
Symposium on Operating Systems Principles, ACM Press (2005) 235–248

14. Sherwood, T., Perelman, E., Hamerly, G., Calder, B.: Automatically Character-
izing Large Scale Program Behavior. In: Proceedings of the Tenth International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS 2002), ACM Press (2002) 45–57

15. Bottou, L., Bengio, Y.: Convergence Properties of the K-Means Algorithm. In:
Advances in Neural Information Processing Systems 7, The MIT Press (1995) 585–
592

16. Alpaydin, E.: Introduction to Machine Learning. The MIT Press (2004)

