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Carretera al Lago de Guadalupe Km. 3-5, Atizapán, Estado de México, 52926, Mexico
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Abstract. Computer forensics is often used to analyse an IT system
after an intrusion in order to determine how the attacker gained access
to a resource and what he did afterwards. Usually, it reveals that the
attacker often runs a exploit to take advantage of a vulnerability in order
to cause unintended system behaviour. Given a log file, we are interested
in pinpointing the execution of an exploit, if any. Solving this problem
is rather complex, given both the overwhelming length of a standard
log file and the difficulty of identifying exactly where the intrusion has
occurred. We introduce a novel approach on forensic intrusion detection
using our approach together with a collection of methods. We shall show
that forensic intrusion detection based on simple statistical control limits
offers a reasonable detection rate.

1 Introduction

Computer forensics is concerned with explaining the current state of a computer
or a digital storage medium by means of legal evidence.3 It is used, for example,
to analyse an IT system after an intrusion in order to determine how the attacker
gained access to a resource and what he did afterwards. Forensic intrusion de-
tection reveals that, often, the attacker runs a small program, called an exploit,
which takes advantage of a system vulnerability in order to cause unintended
system behaviour.

We are interested in pinpointing the execution of an exploit, if any, in a
given log file. Solving this problem is crucial to a successful subsequent forensic
analysis, because it enables the computer forensic scientist to focus only on
system activity related to an intrusion. However, forensic intrusion detection is
rather a complex goal, given both the overwhelming length of a standard log file
and the difficulty of identifying exactly where the intrusion has occurred; it thus
requires tool support.

In this paper, we take a few steps towards automating forensic intrusion
detection. We introduce a novel approach on forensic intrusion detection. Our

3 http://en.wikipedia.org/wiki/Computer forensics



investments involved the application of several standard but well-recognised clas-
sifiers, namely: on-line k-means, non-negative matrix factorisation and hidden
Markov models, and a few basic statistics, which we used to specify control
limits.

Paper Overview The rest of this paper is organised as follows. §2 describes our
general approach to forensic intrusion detection. Central to our approach is the
use of Sequitur [1], which is used both for making a log file more manageable,
by eliminating redundant information, and for improving detection, by capturing
temporal aspects of log information [2]. §3 describes our experimental setting:
how and to what extend we collected example system call log files, how we use
them in the construction of classification models for intrusion detection, how we
tested such models, and how we collected experimentation results. §4 gives a
brief overview of the classification methods used in our experiments and details
about the way we used them, in §5 we show a comparative table with the results
obtained in each one of the applied methods. Finally, §6 concludes the paper
and gives directions for further work.

2 Forensic Intrusion Detection: Overall Approach

We approach forensic intrusion detection using an anomaly,4 host-based5 in-
trusion detection model. We assume that an attacker has already bypassed the
intrusion detection system, if any, and that there is a set of logs, where evidence
of the intrusion has (hopefully) been recorded. Each log contains a record of the
system calls that have been executed by the system due to a process request.
Our aim is to develop a method capable of pinpointing in one such a log the
execution of an exploit, if any, whereby an intruder has lifted his priviledges to
those of a system administrator.

Building a successful forensic intrusion detection system (IDS) of this kind in-
volves addressing two key issues. First, accuracy: the performance of an anomaly
detection method highly depends on the accuracy of the profile that it uses to
capture ordinary system behaviour. Building one such a profile is difficult in
general, and worse in our case, because normal and abnormal system behaviour
differ quite subtly and hence are difficult to put apart. Second, scalability: com-
puter activity, even in a moderate computer, very quickly yields gigabytes of

4 Based on the detection scheme, an intrusion detection system (IDS) is either misuse
or anomaly. A misuse IDS aims to detect the appearance of a known attack. While
accurate, misuse IDSs are often unable to detect variants of known attacks, com-
monly referred to as mimicry attacks, or attacks that exploit vulnerabilities recently
discovered. To get around this problem, an anomaly IDS counts on a characterisation
of ordinary activity and uses it to distinguish an abnormal one [3].

5 Depending on the activity it observes, an IDS is either of three types: host, network
or application. A host IDS is usually set to audit the functionality of the underlying
operating system, as it executes system calls, but can also be set to watch critical
resources.



information [4, 5]; hence, model construction and log analysis for forensic intru-
sion detection are at best very time consuming but usually overwhelming.

Our approach to address both issues relies on two key observations. First,
although huge, log files contain a number of repetitive, spurious information,
which gets on the way to a successfull forensic intrusion detection. Second, al-
though forensic intrusion detection involves analysing a complete log file, the
construction of a profile for ordinary behaviour might be achieved considering
only some parts of it. We consider these two observations in turn below.

Figure 1 graphically explains the process followed in our experiments. First,
we generated log files with ordinary and abnormal behavior, divided them into
three streams of 30 000 system calls, reduced those streams with sequitur and
then divide them into windows of length 100. After that data preprocessing, we
obtained the values of 9 attributes for each window and then used those values
as input of Online K means, NMF, Box Whiskers and Substractive Clustering
along with Online K means, followed by HMM. After the application of the
method we obtained a set of possible abnormal windows, we eliminated stand
alone possible abnormal windows and possible abnormal set of windows without
any dangerous system call. The output are the abnormal windows in a log file.

2.1 Factoring Out Repetitive Behaviour

Driven by our first observation, we shrink a log file identifying sequences of sys-
tem calls of frequent occurrence and then replacing them all, each for a fresh
meta-symbol. To this aim, we apply Sequitur [1], a method that infers composi-
tional hierarchies in the structure of an input string. Sequitur detects repetition
and factors it out of the input string by forming rules in a grammar. Sequitur
rules out grammatical rules that share one or more digrams or that are used once
only in the production of the string. These two constraints enable Sequitur to
yield the shortest grammatical rule that can produce the input string.

Sequitur significantly reduces a system call log file. Throughout our exper-
iments, we have obtained an average reduction factor of over 20 in attack-free
log files; this implies an average log file reduction of over 95%. Compact log files
account for a much faster construction of the detection model and for making
forensic intrusion detection more tractable. This is because compacting log files
alleviates the burden of analysing redundant information. Moreover, literature
reports that it slightly increases the detection ratio but, more importantly, at
the virtually no cost of increasing the false positive ratio only 1% higher [2]. Our
experiments confirm this: we have found that the meta-symbols associated with
ordinary behaviour are unique and highly repetitive.

These benefits do not come for free though. First, introducing meta-symbols
to replace system call sequences increases the size of the alphabet, thus diluting
the effectiveness of a classification technique. Second, when reducing information,
crucial intrusion tracks might be taken away and thus they will not be observed
by the forensic intrusion detection method.



Fig. 1. Methodology

2.2 Good Enough is Enough

Repetition in ordinary behaviour significantly alleviates the burden of forensic
intrusion detection. However, we have shortened this burden even further, using
only part of a log in the construction of a profile for ordinary system behaviour.
To establish that this approach yields a profile that is as good as another one
built using the log fully, we applied the following, two-step procedure.

The first step aims at proving that the information entropy of both a log
and any randomly selected block of it are very similar. To this end, we picked
up a few attack-free logs at random. Then, for each selected log, we randomly
selected several blocks of it, each of a different size. We computed the entropy
of both the log and all its associated blocks. Throughout our experiments, we
have found that these entropies do not differ significantly.

The second step aims at proving that the quality of the profile to be con-
structed would not be severely affected by taking a log portion only. We estab-
lished this inputting both the log and their associated blocks, one at a time, to
Sequitur. Again, throughout our experiments, we have found that the gram-



matical rules ouput by either of these inputs coincide largely, in average more
than 90%.

3 Experimental Setting

For the purpose of our work, every one of our experiments were performed in a
Linux distribution running on a virtual machine VMWare. We traced 10 log files
divided into 2 categories; the first one is composed of 10 ordinary behavior logs
from different users, the second are 3 log files with ordinary and attack behavior.
An ordinary behavior log file is an attack-free log file, an attack behavior is
produced when an attack is done. To capture our traces, we used a special Linux
command: strace.

Ordinary log files were captured in the following linux distributions: RedHat
Enterprise 4.0, Fedora 8.0, and Ubuntu 9.04. To capture attack behavior, we
collected 3 user to root (U2R) attacks, two that exploit Fedora 8.0 vulnera-
bilities on vmsplice system call, and one exploits a RedHat 7.0 vulnerability
on ptrace system call. Each log file traces a user session, or many user
sessions in a computer. Each session has an average length of 8 hours.

Of each ordinary log file, we decided to use only a part of them which length is
90 000 system calls divided in three streams of 30 000 system calls. The streams
were randomly extracted from the first, second and third part of the entire log
file. To analise a log file, each stream of 30 000 system calls was reduced us-
ing Sequitur. The sequitur algorithm constructs a context-free grammar which
extracts hierarquical structures that generate the stream of system calls. Fur-
thermore, every reduced stream was divided on windows of 100 elements, and as
step we slide a window of 10 elements. An element is composed by system calls
and metasymbols, where a metasymbol is a stream subsequence which appears
more than twice. Our approach depends on 9 attributes from each window in a
reduced stream, those attributes are:

1. Maximum number of consecutive system calls.
2. Number of system calls.
3. Mean of succesfull system calls.
4. Mean of consecutive system calls.
5. Number of distinct system calls.
6. Maximum number of consecutive metasymbols.
7. Number of metasymbols.
8. Number of distinct metasymbols.
9. Window lenght without reduction.

To use these attributes we evaluated its usefulness trough an experiment. The
results showed us that the attributes are useful for us. Therefore the attribute
values were calcuated for every window and then used as input of 3 classification
techniques to forensic intrusion detection, and 1 preprocessing set of techniques
which will create the input of the last applied classification technique, classifica-
tion techiques identify possible abnormal windows.



Because of the nature of our experiments an attack can not be in a stand
alone window, this allow us to eliminate those windows of the set. In [6], dan-
gerous system calls on a system were defined: chmod, fchmod, chown, fchown,
lchown, execve, mount, rename, open, link, symlink, unlink, setuid, setresuid,
setfsuid, setreuid, setgropus, setgid, setfsgid, setresgid, setregid, create module.
An attack must have at least one dangerous system call, therefore if there is not
any dangerous system call in one of the resulting streams, it is eliminated from
the set.

As a result of the experiment comparing the nine attributes in some of the
ordinary and abnormal log files, we calculated measures like mean and standard
deviation. These measures were useful in our analysis to identify abnormal win-
dows on a log file. Therefore we classify the behavior of a reduced log file based
on two limits, mean minus standard deviation and mean plus standard deviation
of every one of the attributes, at that point we use two criteria: consider that a
window is abnormal if it is marked as abnormal by one or more attributes and
consider that a window is abnormal if it is marked as abnormal by half or more
than the half of the attributes.

Finally one or more sequences of abnormal behavior windows are obtained
for each one of the criteria applied, and are processed as explained at the end of
the last section.In the following section we will briefly describe the main aspects
of each classification method of our approach.

4 Overview of Classification Techniques

In this section we briefly describe the applied classification methods to the data.
Each method has as output a set of possible abnormal windows. Because of the
length of an attack, the window, and the step, it is impossible that an attack be
contained just in a single window, that allows us to consider that the possibly
abnormal stand alone windows are ordinary windows. As a result of the previous
process every set of possibly abnormal windows has a length of at least two
windows.

4.1 Hidden Markov Models

An HMM is a stochastic model of discrete events and a variation of the Markov
chain. An HMM consists of a set of discrete states and a matrix A = aij of state
transition probabilities. Every state has a vector of observed symbol probabili-
ties, B = bj(v) that corresponds to the probability that the system will produce
a symbol of type v when it is in state j. The states of the HMM are inferred
from the observed symbols.

On our experiments we used HMM as a classfication method to forensic
intrusion detection. To use this method we first did a little preprocessing to
the data: at this point we have 9 attributes that represent the behaviour of
our normal logs, we used subtractive clustering to obtain the number of clusters
that we used as a parameter to Online K means, as a result of applying the



last technique we obtained a log made of numbers that represent the cluster
to which the data that used to be there belongs. Substractive clustering uses a
distance measure to calculate the ideal number of clusters of some data based
on euclidean distance. Online K means classify data in clusters using euclidean
distance.

We used different inputs for substractive clustering, so we obtained different
number of clusters for each input. Each output log considers a different number
of clusters. These logs are the input for our HMM’s.

After this preprocessing, we construct an ordinary behavior model by learning
the probability of each element of ordinary behavior emerging from each node
and the probability of each transition between nodes. There are some tools wich
implement a Hidden Markov Models, we used HTK [7].

Transitions are made successively from a starting to a finishing node, and
the transition and elements of ordinary behavior probabilities can be multiplied
at each transition to calculate the overall likelihood of all the output elements
produced in the transition path until that position. When all transitions are
finished, the Hidden Markov Model generates an element sequence according to
the likelihood of a sequence being made along each path.

We choose a number of states corresponding to the number of clusters gener-
ated. To train our model we used ordinary behavior cluster streams which were
the base for the model construction. The testing phase was divided into two
steps, we first randomly chose some cluster streams used in the testing phase
to calculate a threshold that belongs to ordinary behavior. In the second step
ordinary and abnormal cluster streams were tested using the HMM model. The
output of the second step is a probability of belonging to the HMM model, if
this probability is less than the threshold of ordinary behavior it is labeled as
abnormal, otherwise as ordinary.

Notice that we used streams; which are smaller than a log, this is done to
make easier the localization of an attack. we divided a log into streams, if a
stream doesn’t belong to the initial model, it is considered abnormal and we
assume that it contains an attack execution.

4.2 Non-Negative Matrix Factorization

Non-Negative Matrix Factorization or NMF is a method developed by Lee et. al
in [8], where a matrix X is factorized into two matrices W and H, this method
assures that the factors W and H must be non negative. The algorithm is defined
formally like, give a database represented by an n × m matrix V, where each
column is an n-dimentional non-negative local vector belonging to the original
database (m local vectors), n is the number of samples and m is the number
of attributes of each sample. It finds two matrices W and H, we obtain an
approximation of the whole database V by:

Viµ ≈ (WH)iµ =

r∑
a=1

WiαHαµ (1)



Where the dimensions of the matrix W and H are n x r and r x m, respectively.
Normally, r is chosen so that (n + m)r < nm. Each column of matrix W contains
a basis vector while each column of H contains encoding coefficients needed to
approximate the corresponding column in V .

In order to use the NMF algorithm, we introduced training ordinary log files
as the input and the frecuency of individual elements in each window of length
100 is counted. The NMF method uses the values of elements frequencies in
each window as entries for matrix V , where Viµ is the number of times the i-th
element appears in the µ-th window. Matrix V can be factorized into W and
H. The columns of W represent the basis profiles and the columns of H are the
encoding coeficients of ordinary behavior.

If the features contained in any window deviate significantly from those of
the ordinary behaviors learned in the training datasets, the delta value will
be bigger, meaning a big difference between the behaviors. We used each one
of the test windows as the second input, obtaining deltas whose values were
the similarity between the test windows and normal behavior. Using the normal
behavior deltas, we calculated the median and everything above it was considered
an abnormal behavior.

4.3 Box Wiskers

This is a very graphic method helpful in finding outliers (limits) [9], to calcu-
late them we obtained the first, second and third quartile values, and the inter
quartile range (IQR). Once we calculated those data, the outliers are:

Lowerlimit = Q2− IQR ∗ 1.5 (2)

Upperlimit = Q2 + IQR ∗ 1.5 (3)

The constant value 1.5 means that the whiskers extend to at most 1.5 times
the box width (IQR) from either the line inside the box that is the median of
the data. The data beyond those whiskers is atypical, which means that if we
use this method to represent ordinary behavior it is possible to detect abnormal
behavior that must be atypical.

For this method we calculated the outliers of each attribute of ordinary be-
havior and then used those limits to detect abnormal behavior that are all the
atypical windows, as a result of this experiment we obtained a set of possible
abnormal windows by each analyzed attibute, these windows were processed as
written in the las part of section 3 to obtain as a final output of this method a
set of abnormal windows.

4.4 Online Kmeans

The K-Means algorithm was introduced in [10]. It is a clustering method which
dispatches K centroids w(k) in order to find clusters in a set of points x1, ..., xL.
K-means use the distance to the center of each one of the clusters, the nearest



center is the cluster where the data is classified into. This distance is calculated
by the similarity between the data. This algorithm can be derived by performing
the online gradient descent with the following loss function.

Qkmeans(x,w) , minKk=1(x− w(k))2 (4)

This loss function measures the quantification error, that is the error on the
position of point x when we replace it by the closest centroid. The correspond-
ing cost function measures the average quantification error. The algorithm is
basically composed of the following steps:

1. Place K points into the space represented by the objects that are being
clustered. These points represent the initial group centroids.

2. Assign each object to the group that has the closest centroid.

3. When all objects have been assigned, recalculate the positions of the K
centroids.

4. Repeat Steps 2 and 3 until the centroids no longer move. This produces a
separation of the objects into groups from which the metric to be minimized
can be calculated.

There are a lot of k means mutations, because of this we define the character-
istics of the algorithm we used: euclidean distance, two clusters and initialization
with data of the corresponding cluster. We trained the algorithm with all logs
traced wich contain ordinary and abnormal behavior and we select two random
centroids, each one for a different behavior. At the end of the trainning phase,
we obtained two new centroids. We tested with the same input of our training
but we used the new centroids and this method shows that each window bellongs
to a cluster that contains a specific behavior. The input data were the 9 selected
attributes per window. The result of the algorithm is the classification of the
data by its 9 attributes.

5 Experimental Results

Table 1 compares the results of the proposed methods and STIDE, STIDE is
an IDS [11] proposed by Forrest et al that uses n-grams and the system calls
generated by an exploit to detect an attack in an specific application. STIDE
is one of the most recognized IDS’s in the scientific field because of its good
detection rate, and it is also the state of the art in system calls based intrusion
detection. However in our experiments it does not have a good detection rate,
probably to the fact that we are trying to detect an attack in a whole system,
not just in an application.

As we can se in the table, the method that had the better results is BW and
Mean S.D., but some other methods also obtained good results, however STIDE
had a poor performance, this table allow us to say that our methods are a good
approach to achieve a good detection.



Table 1. Methods Results

False Positive False Negative Detection Rate
(%) (%) (%)

BW (Any Att.) 40 0 100

BW (Half or More Att.) 100 100 0

Mean and S. D. (Any Att.) 52.57 3.33 96.66

Mean and S. D. (Half or More Att.) 9.87 35.37 64.62

BW & Mean S.D. (Any Att.) 63.33 0 100

BW & Mean S.D. (Half or More Att.) 10.68 23.7 76.29

NMF 50 75 25

HMM 57.4 12.6 87.4

Online KMeans (Any Att.) 74.44 13 87

Stide (Any Att.) 42.33 71.29 28.7

6 Conclusions and Future Work

The methods we used for classifying behaviors in a log file are a good approach
in the isolation and automate model creation of an attack, which is a future
work to do.

Most of the presented approaches had a better performance than STIDE and
looking at the results table the detection rate is very acceptable, the errors on
the detection are just a few and this can be improved in further versions.

The further work is to experiment with the proposed methodologies, com-
pletely isolate the attack and the automatic generation of its model, this model
will be the input of an IDS capable to detect the attack and any mimicry mod-
ification of it.
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