Coloured Petri Nets for Modeling of Host-Based
Attacks

Eduardo Aguirre, Karen A. Garcia-Gamboa, and Ratul Monroy

Tecnolégico de Monterrey, Campus Estado de México
Carretera a Lago de Guadalupe Km. 3.5, Atizapan, Estado de México, 52926, Mexico
{a00467871 ,kazurim,raulm}Q@itesm.mx

Abstract. Intrusion Detection Systems (IDSs) often use an attack char-
acteristic signature in order to detect the presence of an attack during
a computer session. The creation of one such an attack signature is a
hard, error-prone task and requires a great deal of expertise both in
computer security and in network operating systems. To compound the
problem, the number of signatures in an IDS database grows up rapidly
and so does the detection time. This is because, for it to be able to de-
tect an attack, an IDS must have the corresponding attack signature,
even though if the attack is a variation of other one, so called a mimicry
attack. Therefore, there exists the need of creating an attack model that
is both easy to understand and amenable for the automatic application
of an IDS to readily approach attack detection. This paper proposes the
use of Coloured Petri Nets (CPN’s) to model computer attacks. In par-
ticular, we will apply CPN’s to model user-to-root host-based attacks.
We will see that a CPN-based attack model can be readily used by an
IDS to detect the attack and some of its variations. The CPN model is
easy to build and to understand. CPN model building is not time con-
suming. What is more, the construction of a CPN-based attack model
can be automated, albeit this issue will be largely ignored here, as it goes
beyond the purpose of this paper.

1 Introduction

From the beginning of the Internet, there has been a constant war between
people who want to steal information or cause some other kind of damage to
computer users and people who want to maintain the (incipient) law and order
over the Internet. Computer attacks have already resulted in countless losses.
Lost assets range from personal, private information, to money and image or
reputation.

Intrusion detection is concerned with the timely discovery of any activity
that jeopardises the integrity, availability or the confidentiality of an IT system.
There are two types of Intrusion Detection Systems (IDSs). A misuse IDS aims
at detecting a known pattern of malicious computer usage or network traffic. An
anomaly IDS aims at detecting any deviation to ordinary, expected behaviour.
Mostly, former IDSs were of type misuse.

This paper is concerned with misuse intrusion detection. Misuse IDSs often
use the characteristic signature of an attack in order to detect the presence
of the attack during a computer session. The creation of one such an attack
signature is a hard, error-prone task and requires a great deal of expertise both in
computer security and in network operating systems. To compound the problem,
the number of signatures in an IDS database grows up rapidly and so does the
detection time. This is because, for it to be able to detect an attack, an IDS must
have the corresponding attack signature, even though if the attack is a variation
of other, already in the IDS attack database (so called a mimicry attack). Thus,
there exists the need of creating an attack model that is both easy to understand
and amenable for the automatic application of an IDS to readily approach attack
detection.

This paper suggests the use of Coloured Petri Nets (CPN’s) to model com-
puter attacks. In particular, it shows how to apply CPN’s to model user-to-root
host-based attacks. We shall see that a CPN-based attack model can be readily
used by an IDS to detect the attack and some of its variations. One of the key ad-
vantages of using CPN’s to model computer attacks is that the model is general
enough to capture a number of attacks and yet sufficiently particular to speak
out the more relevant details of the attack that readily lead to its detection.
We will argue that the CPN model is easy to build and to understand and that
CPN model building is not time consuming. What is more, the construction of
a CPN-based attack model can be automated, albeit this issue goes beyond the
purpose of this paper and so will be largely ignored here.

This paper introduces a methodology for the modelling of an attack using the
system calls generated during attack execution. The paper argues the advantages
of modelling attacks using CPN’s against of using standard signatures.

Paper Overview The rest of this paper is organised as follows. In §2 we present
a little overview of the modelling methodology. §3 and §4 explain what is a PN
and a CPN. In the section §5 we present our modeling technique along with the
methodology and the attacks used in our research, in §6 a brief comparison with
other similar methodologies is presented, finally we conclude the paper with the
section §7 and we give directions for further work.

2 Approach

A CPN is a graphic model capable of representing an action sequence that is
the cause of an event. We can use this model in a general (abstract out details
by collecting into a single, high-level event a number of low-level system calls)
or specific (system calls) way to get a better knowledge of the event. Because
of these characteristics we use CPN’s to model host based attacks. The main
purpose of doing this is to do a better representation of the attack, and a model
that can be used by an IDS.

Because of the nature of a CPN, it is possible to detect some variations of
an attack through the model. To create an accurate model it is necessary to
consider the following points:

1. The model must contain only the needed steps to accomplish the attack.

2. Every way in which those steps can be done must be in the model.

3. The transitions in the CPN can be activated in one way or another. The
execution of some actions can be interchanged.

To use a CPN as a model we must create a methodology based on the previous
points.

3 Petri Nets (PN’s)

PN’s were created in August 1939 by Carl Adam Petri for the purpose of describ-
ing chemical processes. A PN is a mathematical modeling language. It consists of
places, transitions, and arcs that connect them. Input arcs connect places with
transitions. OQutput arcs start at a transition and end at a place. Places can have
tokens; the current state of the modeled system is given by the number and type
of tokens in every place.

PN’s model activities using places and transitions. A place represents a sys-
tem in a time n, a transition connects two or more places. Transitions are only
allowed to fire if they are enabled, which means that all the preconditions for the
activity must be fulfilled. The preconditions ensure thet there are enough tokens
available in the input places. When the transition fires, it removes tokens from
its input places and adds some into the output places. The number of tokens
removed or added depends on the cardinality of each arc. The interactive firing
of transitions in subsequent markings is called the token game.

PN’s are good enough for describing and studying systems that are char-
acterised as being concurrent, asynchronous, distributed, parallel, nondetermin-
istic, and stochastic. Since PN’s are a graphical tool, they can be used as a
visual-communication aid similar to flow charts, block diagrams, or networks.
Moreover, tokens are used in these nets to simulate the dynamic and concurrent
activities of systems. In a PN is possible to set up state equations, algebraic
equations, and other mathematical models governing the behavior of systems.

4 Coloured Petri Nets (CPN’s)

A CPN is an extension of PN. So, a CPN is a graphical oriented language for
the design, specification, simulation and verification of systems [1]. The principal
reason for the success of these kinds of net models are the fact that they have a
graphical representation and a well-defined semantics allowing formal analysis.
It is in particular well-suited for systems that consists of a number of processes
which communicate one another. Principal examples of CPN’s application ar-
eas are communication protocols, distributed systems, automated production
systems and work flow.

A CPN counsists of three different parts: the net structure (i.e., the places,
transitions and arcs), the declarations and the net inscriptions (i.e., the various
text strings which are attached to the elements of the net structure). Transitions

have two kinds of net inscriptions: names and guards. Arcs only have one kind
of inscription: the arc expressions. All net inscriptions are positioned next to the
corresponding net element and to make it easy to distinguish between them we
write names in plain text, colour sets in italics, while initialization expressions
are underlined and guards are enclosed in square brackets. A CPN may have
several other kinds of inscriptions (e.g., describing hierarchical relationships and
time delays).

Each CPN has a set of declarations, which we position by convention in
a box with dashed lines. The declarations introduce a number of colour sets,
functions, operations, variables and constants, which can be used in the net
inscriptions of the corresponding CPN, particularly in the guards, arc expressions
and initialization expressions. The declarations of a CPN can be made in many
different languages, e.g., by means of standard mathematical notation or by
means of many sorted sigma algebras. Each colour set declaration introduces a
new colour set, whose elements are called colours. Every colour set declaration
implicitly declares a set of constants (the colours of the colour set). Moreover,
the colour set declaration can implicitly declare some standard functions and
operations which can be used on the colours of the colour set. A declared colour
set can be used [1]:

In the declaration of another colour sets.

— In the declaration of variables (having the colour set as type).

In the declaration of functions, operations and constants (e.g., a function
may map from one colour set into another colour set).

— In the colour set inscription of a place (indicating that all tokens on the place
must have token colours which belong to the colour set).

5 Modeling Host-based Attacks with CPN

In this section we will explain the methodology for modeling attacks throguh
CP-nets. The models we have created are based on the system calls [2] produced
by the execution of an attack. It is important to say that the model abstraction
level can be changed to make it more understandable.

To create a model we analize the system calls generated by an attack execu-
tion.

We modeled five different attacks, this is showed in 1.

We logged the execution of each one of these attacks through the strace
utility:

strace — f — F —t — T — oOutput File ExploitToM onitor (1)

The output of the previous command is a log with all the system calls gen-
erated by the exploit, these system calls are the base of our methodology. The
preconditions for the transition to be activated are characteristics of the to-
ken or the system, the postconditions are changes in the token or the system
consequence of the transition occurrence.

Table 1. Modeled Attacks

lAttack [(ON] ‘

vmsplice (1) | Fedora 8
vmsplice(2) | Fedora 8
execve/ptrace|Red Hat 7
kon Red Hat 9
do-brk vma |Red Hat 9

Transitions must be created dynamically according to some set of predefined
elements. Each of these transitions must have places before and after it, the
colour depends on the elements of the transition.

Because of the nature of the problem it is not possible to pre-define the
elements of the transitions, Following [3], we have divided the transitions into
two principal elements: conditions C' = {c1,¢a,...,¢,} and consequences O =
{01,09,...,0,}.

Conditions are observable characteristics of a system, which we can predefine
and use to generate actions that represent a condition change. However for each
condition we need to define a threshold: just one change in any condition causes
an action and a new set of conditions. Formalizing: Let T be a set of Thresholds
T = {t1,ta,...,tn}. Let c;eC and t;eT, if ¢; and t; are such that the features of
¢; match the threshold ¢;. Then we create a new transition such that it has a
previous state with color C' and a posterior state with color C’ where C’ # C
and C' = O such that O is the set of consequences or postconditions of the
transition and C' is the set of preconditions of the transition.

The a priori definition of conditions and thresholds makes possible to dy-
namically create actions when changes in the conditions occur. This allow us
to create transitions in a CP-net, the initial set C are the preconditions, O the
postconditions, and T' represents the transitions between these sets.

The steps for modelling an attack are the following:

1. Create a log of the system calls generated by the execution of an attack.

2. Look sequentially into the log for an occurrence of any of the conditions and
thresholds defined a priori.

3. If a condition change is such that the features of the condition match the
threshold, look for the values of the condition in the system before the thresh-
old fires and create an state or merge with another existent, which color and
values depends on the condition before the ocurrence of the threshold.

4. Create a transition which color and values depends on the threshold found.

5. Look for the values of the condition in the system after the threshold was
fired and create an state or merge with another existent, which color and
values depends on the condition after the ocurrence of the threshold.

6. Go back to step 2 until there is no match of any condition with a threshold.

Figures 1 and 2 are the definitions of colors and threshold values used in
our experimentation. These data are the base used for modelling, if a threshold

occurs in the log, a transition with its input and output states is created, in this
way the CPN is created while the log is being analysed.

The proposed methodology allows to detect modified attacks that insert
no operations, however to perform mimicry detection some modification to the
methodology must be made to detect syscalls substitution and interchange.

CP-net
Condition.- Dangerous System Calls.

Color.- Dangerous sc (string) (chmod, fchmod, chown, fchown, Ichown, execve,
mount, rename, open, link, symlink, unlink, setuid, setresuid, setfsuid,
setreuid, setgroups, setgid, setfsgid, setresgid, setregid, create_module)
ReturnValue .(mt] (n | I’I>=-1}
uid {uint) (n | n=0 or n<>0)
gid (uint) {n | n=0 or n<>0)

Mode (string) (n | n<>""or NULL)
Flags (string) (n | n<>" or NULL)

Umbral.- Anychange on the "Dangerous sc"color.

Condition.- Anomalous Sequences.

Color.- seguence [Stringlist) (“execve, brk, access, open, fstat64, mmap2”
| fstat64, mmap2’)

Umbral.- Anychange on the "Sequence" color.

Fig. 1. Colours 1 and 2

Figures 3 and 4 show two CPN’s created by following our methodology. Due
to paper size constraints it was not possible to show a figure that shows the
creation of a CPN step by step.For more details, contact the first author at
ironwk85@gmail.com.

CP-net

Condition.- Not frequently used System Calls.

Color.- NFsystemcall (string) (_newselect, _sysctl, acct, aditimex, afs_syscall,
bdflush, break, cacheflush, capget, capset, chown, chroot, creat, create_module,
delete_module, exit, fchown, fentl, fdatasync, flock, fork, fstat, fstatfs, ftime, ftruncate64,
get_kernel_syms, getegid, geteuid, getgid, getgroups, getitimer, getpagesize, getpmsg,
getpgid, getpriority, getresgid, getresuid, getsid, getuid, gtty, idle, init_module, ioperm, iopl,
ipc, Ichown, Ichown32, link, lock, Istat, madvise, mincore, mknod, mlock, mlockall, mmap,
modify_ldt, mount, mpx, msync, munlock, munlockall, nfsservctl, nice, oldfstat, oldlstat,
oldolduname, oldstat, oldumount, olduname, pause, personality, phys, pivot_root, pread,
prof, profil, ptrace, putpmsg, pwrite, query_module, quotactl, readahead, readdir, ready,
reboot, rt_sigpending, rt_sigqueueinfo, rt_sigsuspend, rt_sigtimedwait,
sched_rr_get_interval, sched_setparam, security, sendfile, sendmsg, setdomainname,
setfsgid, setfsgid32, setfsuid, setfsuid32, setgid, setgroups, setgroups32, sethostname,
setitimer, setpriority, setregid, setresgid, setresuid, setreuid, setreuid32, setsid, settimeofday,
setuid, setup, sgetmask, shutdown, sigaction, signal, sigpending, sigprocmask, sigsuspend,
socketcall, socketpair, ssetmask, stat, stime, stty, swapoff, swapon, sync, sysfs, syslog,
times, truncate, truncate64, ulimit, umount, uselib, ustat, vhangup, vm86, vm86old, vmsplice)

Return Value (int) (n| n>=-1)

Threshold.- Any change on the "NFSystemcall* color.

Fig. 2. Colour 3

6 Related Work

There are two similar approaches that try to create an attack model similar to a
CPN. One is [4] that proposes to create an attack model using a language called
EDL (Event Description Language). This model is similar but is not as popular
as a CPN. The created model is easier and faster to create than a common
signature but it does not have the abstraction characteristic that a CPN has.
In that paper the elements modelled are events. We think that there is no need
to create a new language based on CPN’s, we create models using CPN’s and
system calls not events, the result are a model that can be abstracted, capable
of detect some modifications of an attack and with a semi automatic creation,
all of this without learn a new language.

The second approach uses hierarchical CPN’s [5]. It presents a very good
approach to modelling network based attacks. They use events for the modelling

but do not have any intention to automate their models. Our job only focuses
on host based attacks and tries to create a model that can be automated, and
capable of detecting attacks and some modifications of them using system calls.

7 Conclusions

CPN’s are a good approach to model host based attacks because of the character-
istics of the method, however a good methodology is necessary to take advantage
of them. The methodology we present must be modified to allow mimicry attack
detection. However the generated models seem to be a good representation of
the attack.

The methodology presented is also able to be automated, being this some
further work to do, along with the isolation of the attack, that is commonly
contained into a huge log of system calls.

The model can apparently be the input of an IDS. More experiments and
more analysis are required, but the initial tests show a positive result. This was
done by the execution of the attack several times and using the obtained model
to check if the attack could be detected at some point. Successful results were
obtained in all the tests. When some modifications were done to the attack,
just the insertion of no operations allow the model to detect the attack, other
modifications make the model to do not recognize the attack.

References

1. Jensen, K.: Coloured Petri nets: basic concepts, analysis methods and practical use.
Springer (1997)

2. Hofmeyr, S.A., Forrest, S., Somayaji, A.: Intrusion detection using sequences of
system calls. Journal of Computer Security 6(3) (1998) 151-180

3. Girault, C., Valk, R.: Petri nets for systems engineering: a guide to modeling,
verification, and applications. Springer Verlag (2003)

4. Meier, M., Schmerl, S., Konig, H.: Improving the efficiency of misuse detection. In:
DIMVA. (2005) 188-205

5. Wu, R., Li, W., Huang, H.: An attack modeling based on hierarchical colored petri
nets. Computer and Electrical Engineering, International Conference on 0 (2008)
918-921

EIMIAOOES

JMERELETT

Loae'ca IR0 T and)

¢ e

..... 0= == " R

Lt D=0 O]

EIOUATDES
JAURETET
UERRAPLETT

e e 052 =" 2502)

FrouEnosg

Ladwe TR0 0B AD)

NPT
’.K.E.o#.?u;.“eb
[L e e Y
MRS T
(=por=ys O="arua) _ 0 ot)
e T " Lo oee 0m=" Qe] ez, leaoe 002" " '
ecees DR IR L

¢

J
..... D= Tl
(eeoed TR =)

JRHTTT

.na..:._unvdnvdpﬁwmﬂ«w&

Conseee T D= D PrOSALRE]

=

ceees 0202 T

Lodee TR0 T0na)

Lo = D= W)
BIOUETOES

-

EIIIATOAS

FToUETDES [oeeec T =" 0= TR
4 deutses
ol D TTIHHR [¢ ettt
[P SN e _ Condoee DR D= TP BSREE)
[S el)

PRI
TIOMETORS

PR

a'ess ORE 02T)

wereee == 2= RA033R)
i 0
4, ieniOes esene e TR TR Tl (6 et 1-aiaq) (R P

Coeed B0) ot et T

Fig. 3. Example 1: Attack Model

TIIIRTORG

Lot O D= = W)

PR
g Lol D= 1= 0)

..... 0=="0== 0] o TR 0T

[P T R
Geacoed 2= 02" T)

Lo o 0= 0= SRS

M.mu_km—.—uwm
C e e T
[el PRI Lot T O b e deia]) ApmsiasyT IR
.La.n?vn?u;.ﬁom@ru
Lo TR0) esees R TR T

IR

(odoeed TR 0" S50

[oc'eed TR0 D PIOEELRE])
..... g e (e 0= 0 P RS
Cocs'ee D=0 "R ATAL)
o Ll 00T
JUEHTITT
loastees TR 2 O R T Lot TR D= T)
[P e S leacved D= 0= PIRER)
©elen e e
(L fm e pemii) L S R)
JREETIT
BIIUATOAG ETIETORS T JERPLITT
e 0D T o) (A S ol S [% o S A, Pr—.

G D=0 Tk T

Fig. 4. Example 2: Attack Model

