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Abstract. In this paper we present the use of Kohonen’s Neural Network (or 
Self-Organizing Map - SOM) in an Automatic Speech Recognition (ASR) for 
isolated words in Spanish language with Mexican accent for a single speaker, 
the words that used indicated directionality, this application could be used in an 
automatic wheelchair. The corpus of this application uses four words, 
“adelante” (forward), “Atrás” (backward), “Izquierda” (left) and “Derecha” 
(rigth). Our algorithm proposes has structure in five steps: recording, filtering, 
begin-end detection, feature extraction and word recognition (Speech 
Recognition). The signal was filtering using a wavelet denoising algorithm. We 
propose a begin-end voiced algorithm with the use of a filters bank, this 
algorithm found it automatic in the signal recording. Then, we apply LPC 
algorithm for a feature extraction of each word that we use, after the 
coefficients (obtained with LPC), are introduce in SOM Network for search 
what word pronounce. Word recognition accuracy of 91% for average of four 
words. 

Keywords. Kohonen’s Network, SOM, Self-Organization Map, Wavelet 
Denoising, LPC, Automatic Speech Recognition.  

1 Introduction 

Some troubles of an Automatic Speech Recognition (ASR) are: 1) variation in an 
physiology conditions in a human being [1], [2], [3], [4], that exists because all people 
have different vocal registers, that registers depends of an age, gentle, and regional 
accents. All of them give place to origin that two persons can’t pronounce the same 
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word with the same characteristics. In particular, two pronunciations of one person 
can’t be matched, in signal question, because exists variations when some person 
pronounces this words sequence [5], like to speed of pronounce, amplitude of each 
word, energy with that pronounce, emotional state, etc., we can say that one person 
can’t pronounce the same word. 2) the noise that exists in a digital signal when 
recording, this trouble is annoying when use all kind of system for convert an analog 
signal like to the voice, this factor is crucial for an accuracy recognition in an ASR 
[6].  
 
All kind of algorithm that was designed for an ASR try to solve this troubles, in one 
hand, search the best form for obtained an high accuracy for recognition, this is, 
obtain efficient and effective systems for each pronunciation, in an other hand, exist 
algorithms that remove the noise, always try to increase the accuracy percentage. 
  
For solution of the first trouble exists some methodologies that searching the best 
solution for an ASR, between them to emphasize the use of algorithms for linear 
programming, like to the Dynamic Time Warping (DTW) [5], [7], [8], [9], the 
algorithms that uses statistics and probabilistic  tools, like to Regression Linear 
Algorithm (RLA), Bayesian Networks (BN) [12], [13], Hidden Markov Model 
(HMM) [9], [14], [15], [16], [35], etc., in another hand, exist algorithms that uses an 
artificial intelligence like to genetic algorithms [17], and neural networks [18], [19], 
[20], inclusive the mixed of some algorithms and the build if of algorithms with 
majority models.  
 
The Solution for the second trouble, typically was used two techniques, all of them try 
to recognize when the voice is present and when exist an unvoiced, the fist technique 
is using the zero crossing rate, and another using the energy for determining the 
presence of voice in signal that was recorded [21], [22]. The central objective is only 
processing the signal when exist voiced, and discriminate the typical noise. 
  
The majority of the ASR systems using windowing with a Hamming window, this 
windowing useful for the stationary of the signal [23], [24], [25], generated that the 
signal has a quasi-stationary and work it with the classical techniques for the 
stationary signals for the feature extraction. This windowing represents more 
computer-time and recourses for an ASR. 
  
We propose an adaptation of  an algorithm of ASR without windowing and pre-
emphasis, use the Linear Predictive Coding (LPC) for feature extraction for the 
pronunciation of each word without the window of 20ms that is frequently use in all 
kind of algorithm for ASR, likewise we include two algorithms: 1) for denoising and 
begin-end voice detection, respectively; 2) for speech recognition uses a Self 
Organizing Map network (SOM), with a single speaker, isolated word and the corpus 
pronounce of words in Mexican Spanish language. The words to recognition are 
“adelante” (forward), “atrás” (backward), “izquierda” (left) and “derecha” (right), this 
application could be used in an automatic wheelchair. These studies of the corpus try 
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to define the variations that could be exist with the accent of the different regions of 
Mexico, in the pronunciation, and their relationship with accuracy of ASR. 
  
The rest of the paper is organized as follows. The methodologies for filtering, begin-
end voiced detection and SOM algorithm was presented in Section 2. In Section 3, is 
presented the experimental setup with the proposed algorithms. The experimental 
results are given in Section 4, and finally we conclude with the conclusion Section.    

2 Methodology 

In this section we present the methodologies using in the implementation of our ASR, 
adaptation with our corpus. Our algorithm proposes do not use a windowing and do 
not have pre-emphasis, and have structure in five steps: recording, filtering, begin-end 
detection, feature extraction with LPC and word recognition with SOM algorithm.  
 
2.1 Filtering with wavelet denoisinig 
 
Most of the electrical signals presented different kinds of noise (could be randomize, 
pop, Gaussian, etc.) [26], [27]. The noise modifies the original signal. A simple model 
of this phenomenon is the adding with the original signal, this could be represents for 

,rsf +=  (1) 

where ,f  s  and r  are the contaminated signal, the original signal and the noise, 

respectively. The method of denoising with wavelet transform consists in assumed 
that f  is the same that the transmitted signal with noise, and supposed the next 

conditions: 

1. To recover the energy of s  is covered, in a higher percentage, for the values 
of the Wavelet Transform (WT) and this values presents magnitudes higher 
that the threshold T > 0. 

2. All the noise signal values of the WT presents magnitudes below that the 
noise threshold Tr, to fulfill with Tr < T. 

The steps of the algorithm for removing the noise use the method of “Wavelet 
Threshold”. These steps are: 

1. Select the T value for a threshold, where: 
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2. When obtained the Inverse Wavelet Transform (IWT) has an approximated 
of the signal without noise [26], this is )(WTIWT . 

In [28] describe the calculus of the threshold for the Wavelet coefficients with 
empirical method using a universal threshold: 

,log2 2
NT σ=  (3) 

where 2
σ is the variance of the original values and N is the simple size. 

The results of the wavelet decomposition presents an approximation of the 
coefficients, see Figure 1, with multiresolution filter bank with 4 Daubechies 
coefficients of the WT for the analysis stage. The stage of the signal WT 
reconstruction and the post-processing, can see in Figure 2, with two levels and filter 
bank with 4 Daubechies coefficients. This analysis of multiple resolution enable the 
capacity for analysis the signal with different kind of frequency bands; with this, can 
see it every transient stage in the time domain and the frequency domain [29]. 
  

 
Figure 1. Two levels resolution of the filter bank for the decomposition signal and 4 

Daubechies coefficients [29]. 

 
Figure 2. Two levels resolution of the filter bank for the reconstruction signal and 4 

Daubechies coefficients [29]. 

In the Figures 1 and 2, has that n is the simple rate, x[n] is the input signal, a, b, c and 
d are the coefficients of each filter, z[n], z2[n], w[n], w2[n] are the output signals, f is 
the filtering stage, 2↓ is a downsampler, 2↑ is an upsampler, zd[n] is the output of the 
first high pass filter, wd[n] is the output of the first low pass filter, z2d[n] is the output 
of the second high pass filter, w2d[n] is the output of the second low pass filter, and 
z2u[n], zu[n], w2u[n] and wu[n] are the outputs of the upsamplers, z2f[n], zf[n], w2f[n],  
are wf[n] are the outputs of the high pass and low pass filters for the reconstruction 
signal, and y[n] is the output signal. 
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2.2 Begin-End Pronunciation 

For the search of begin and end of each word pronounced, was used the next block 
diagram (see Figure 3) [30]. First, the algorithm used a Band Pass Filter (BPF) with a 
cascade composition of two filters, Low Pass Filter (LPF) and High Pass Filter (HPF), 
this function obtained the zone with more agglomeration of the signal without noise. 
After apply a derivative filter, where was find the zero crossing. Then, was calculated 
the energy of the signal and applied an adaptative threshold that found it begins and 
end of each pronunciation. 

 

 
Figure 3. Block Diagram of the Search begin-end word pronounce algorithm. 

2.3 SOM Algorithm 

The SOM Neural Network as an ordered, no linear, smooth mapping of high-
dimensional input data manifolds onto the elements of a regular, low-dimensional 

array. The input is definable as a vector { } nT
n Rxxxx ∈= ,...,, 21  and the output as a 

vector n
R
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m ∈= ],...,2,1[ . Assuming a measure distance between x  and 

im , denoted for ),( imxd ,  the image of an input vector x  on the SOM array is 

defined as the array elements mc that has best matches with x , this index [31] is 
defined by the next equation  

)}.,({minarg i
i

mxdc =  (4) 

For common selection of the distance d, the Euclidean distances are defined by [32]  
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In general, if exists dismatches of x and mi when obtained d, found it the first winner 
neuron mc. 

The SOM is a special type of competitive learning network that defines a spatial 
neighborhood for each output unit. During competitive learning, all weight vectors 
associated with the winner and its neighboring units are updated.  
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In the next lines presents the steps of the learning SOM algorithm [33]. 
 

1. Initialize weights with random numbers; set initial learning rated and 
neighborhood. 

2. Present a pattern x and evaluate the network outputs. 

3. Select the unit ),( ji cc with the minimum output: 

.min ij
ij

cc wxwx
ji

−=−  

4. Update all weights according the following learning rule: 
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where )(tN
jicc is the neighborhood of the unit time ),( ji cc  and )(tα  is the 

learning rate. 
5. Decrease the value of )(tα  and shrink the neighborhood ).(tN

jicc  

6. Repeat steps 2 through 5 until the change in weight values is less that a pre-
specified threshold or a maximum number of interactions are reached. 

3 Experimental Set-up 

In the Figure 4 see the block diagram of the experimental set-up and the next lines 
explain all the stages were constituted.  

 

 

Figure 4. Block diagram of the experimental set-up. 

3.1 Recording 

The recording of word pronunciation was performed with a Laptop Computer XPS 
Dell with a microphone integrated in the computer. Was realized a consecutive series 
of pronunciations with the same word during two minutes. This signal was obtained 
with variations in speed, frequency and intensity. All this was successful for a single 
speaker and with the software Simulink® of Matlab®. 
 
The time recording was established in 2 minutes with a sample rate of 8kHz, because 
with this time we obtained 50 samples of each pronounce. This number of samples 
was considering enough for our experimental, 35 samples for training and 15 samples 
to recognize test. These words were pronounced in controlled environment and with 
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characteristic noise generated for the lighting lamps, sometimes with spontaneous 
sound outside of the experiment, moreover exists an offset in the signal. 

3.2 Filtering 

For Filtering was realized with wavelet denoising using a multiresolution filter of 12 
levels with 4 Daubechies coefficients (a=-0.4830, b=0.8365, c=-0.2241, d=-0.1294).  
The Daubechie wavelet was selected because this type of wavelet presented the best 
results with the noise filtering, likewise a comparison was made with different levels 
of the filter bank, was obtained that over of 12 levels presents a greater reduction of 
noise and obtained a better signal, we used 12 levels because is the minimum in 
computer time with the best results. 
 
This algorithm generated one change of amplitudes of the signal and a little distortion 
of pronounce, but this effect did not affected in the information that was implemented 
in the algorithm, because this considerations was used in the learning and recognizing 
for the word pronunciation. 
 

3.3 Voiced/Unvoiced Detection (beginning and end pronunciation) 

With the filter bank described in section 2.2 was realized the search begin and end of 
each pronunciation, in the Figure 5 presents the results for the implementation of our 
algorithm. The algorithm returned the index where the word begin and end of the 
pronunciation; this algorithm detected the beginning and end in a large sequence of 
pronunciation, and is important say that all beginning and end of the pronunciation, 
that was find it, presents different length in time, whereby was necessary to apply an 
alignment. 
 
It should be mentioned that the derivative filter was used, is based it on the spline 
wavelet of order 4, which allows us to obtain the signal derivative function; this gain 
detected the zero crossings of the signal and removed the offset that occurs during the 
recording of sound. 
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Figure 5. a) Original Pronunciation, b) Pronunciation after Filtering with Denoising and 

Band Pass applied, c) Pronunciation after of derivative filter, d) Energy of the pronunciation 
after c), e) Points of Voiced/Unvoiced Detection of the pronunciation, and f) Beginning and 

End Detection of the Pronunciation. 

3.4 Recognition 

SOM Training, Learning and Simulation. 

 
The SOM network was created in Matlab® with an array of 25X5 of classification 
neurons, using a hexagon topology, calculating the neighbors with Euclidean 
distances algorithm. The inputs of the net was two, first, the word to used for training, 
learning or recognizing, and second, the average vector of the word pronounced (this 
vector was obtained with 35 samples of each words and calculated the average of 
their coefficients and); this vector change according to the pronunciation to try to 
recognized, for example if the pronunciation was “izquierda”, the learning was made 
with the “izquierda” average vector, along with the other pronunciations. 
  
The 35 samples of each pronunciation used for training with the average vector of 
each word obtained, after this, the network obtained a vector with the characteristics 
weights of each word trained. Finally, we obtained 4 vectors with characteristics 
weights (vectors of “adelante”, “atrás”, “izquierda” and “derecha”). 
  
Our algorithm was trained with 10,000 epochs, because Kohonen [34] in his paper, 
provides this epochs as sufficient training for applications of speech recognition. 
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Recognition Network 

 
The algorithm used for recognition from the data obtained from the SOM network is 
performed by the sequence of steps outlined below: 
 
1 The word to recognize is taken and is introduced to the neuronal network next to 

the media vectors of the four words.   
2 The simulation of the neuronal network is carried out with the word to recognize 

and each one of the media vectors.   
3 It is obtained with each simulation, a distance comparison with each one of the 

four words, using the method of Euclidean distances.   
4 A comparison among the four distances obtained is carried out, and the distance 

with smaller value represents the similar pattern that defines that is the same 
word. 

5 Experimental Results 

The proposed algorithm did not use a pre-emphasis and a Hamming window, with 
this; we could avoid the use of fragments and worked with full signal, by obtaining 
the LPC coefficients. When this considerations, in Table 1 presents the results was 
obtained with the SOM network. The accuracy of the algorithm was 91% (average of 
4 pronounces), in each pronounce exist some variations in recognition rate, because it 
involves factors such as length, duration and amplitude in each pronunciation. 

 
Pronounce Percentage of 

Recognition 

“Adelante” 
(forward) 

87% 

“Atrás” 
(backward) 

86% 

“Izquierda” 
(Left) 

100% 

“Derecha” 
(right) 

90% 

Average 91% 

Table 1. Percentage of Recognition (each word pronunciation) 

6 Conclusions 

We implemented a filtering stage to reduce noise that will support future application 
of the implementation of the algorithm in real time, and its possible relevance in an 
embedded system. 
 
The search for the beginning and end gave us a reduction in computation time, 
because we don’t have to process the silent before and after the word pronounced, 
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whit this, we could handle some files with several pronunciations without problem for 
training and recognition. 
 
The LPC coefficients us favorably reduced the amount of data to work and thus could 
reduce the time, resulting in faster training and recognition.  
 
The implementation of SOM neural network provides training in a non supervised 
pattern giving a wide variety of classification of pronunciation of one word, thereby 
gaining an important feature that gives us greater flexibility in the variance of the 
pronunciation of words, and this type of network it offers the advantage of not having 
to assign output values for training and the speed of trains gives greater flexibility to 
be able to calculate weights of each keyword with 10,000 training times in short 
periods of time. Also how the network fits the pattern gives pronunciations to get 
better results in every test performed. With the above was achieved by 91% of general 
recognition of the four words.  
 
The Automatic Speech Recognition was presented an 9% error rate, is quite 
acceptable, because if  we pronounce 10 words, our system recognize 9, it may be 
mentioned that the word “izquierda” was obtained 0% error rate, because exist 
enormous difference in the word with the rest of the corpus managed. 
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