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Abstract. This article presents a novel learning methodology based on the 

hybrid mechanism for training of interval type-1 non-singleton type-2 Takagi-

Sugeno-Kang fuzzy logic systems (IT2 TSK NSFLS1). The process of 

combining multiple computational intelligence techniques to build a hybrid 

model has become increasingly popular. As reported in the literature, the 

performance indices of these hybrid models have proved to be better than the 

individual training mechanism when used alone. In this work using non-

singleton input-output data pairs during the forward pass of the training process, 

the output is calculated and the consequent parameters are tuned by recursive 

filter method (REFIL), a Kalman filter type. In the backward pass, the error 

propagates backward, and the antecedent parameters are tuned by back-

propagation method (BP). The proposed hybrid methodology was tested 

thought the modeling and prediction of the steel strip temperature as it is being 

rolled in an industrial hot strip mill, and for comparative purposes, under the 

same controlled conditions maintained on previous work related to IT2 TSK 

hybrid training. Results show the performance of the hybrid learning method 

(REFIL-BP) both, using singleton, and type-1 non-singleton input-outputs data 

pairs. The latter is capable of compensate the IT2 TSK predictor’s tuning for 

uncertain measurements, whilst the former cannot. Also, the results show that 

the hybrid models perform better than the individual techniques when used 

alone for the same datasets.  
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1   Introduction 

In [1] both, one-pass and back-propagation (BP) methods are presented as IT2 

Mamdani FLS learning methods, but only BP is presented for IT2 Takagi-Sugeno-

Kang (TSK) FLS systems. The one-pass method generates a set of IF-THEN rules by 
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using the given training data one time, and combines the rules to construct the final 

FLS. When BP method is used in both Mamdani and TSK FLSs, none of antecedent 

and consequent parameters of the IT2 FLS is fixed at starting of training process; they 

are tuned using exclusively steepest descent method. In [1] recursive least squares 

(RLS) and recursive Kalman filter (REFIL) algorithms are not presented as IT2 FLS 

learning methods.  

The aim of this work is to present and discuss the hybrid-learning algorithm for 

antecedent and consequent parameters tuning during training process for interval 

type-1 non-singleton type-2 TSK FLS (IT2 TSK NSFLS-1 or IT2 NS1 ANFIS) 

systems, using during the forward pass of training REFIL method, while during the 

backward pass, the BP method.   

The hybrid algorithm for IT2 Mamdani FLS has been already presented elsewhere 

[2], [3], [4], [5] and [6] with three combinations of the learning method: RLS-BP, 

REFIL-BP and orthogonal least-squares-BP (OLS-BP). The hybrid algorithm for 

singleton IT2 TSK SFLS (IT2 ANFIS) has been presented elsewhere [7] and [8] with 

two combinations of the learning method: RLS-BP and REFIL-BP, whilst the hybrid 

algorithm for interval non-singleton type-1 IT2 TSK NSFLS-1 (IT2 NS1 ANFIS) has 

been presented in [9] and [10] only with the hybrid learning mechanism RLS-BP. 

There does not seem to be any other mention of type-1 or type-2 non-singleton IT2 

TSK FLS in the literature [1], using the REFIL-BP learning mechanisms. It has been 

never presented before. 

In this work, the IT2 TSK NSFLS-1 system that uses the hybrid learning 

mechanism (REFIL-BP) has been developed and implemented for temperature 

prediction of the transfer bar at hot strip mill (HSM). The same data-set used in 

previous works [7], [8], [9], and [10] in order to serve as comparison of functionality 

and stability of the novel hybrid mechanism and for comparation results. The 

intention of this paper is to show the implementation in a real industrial application of 

the (REFIL-BP) hybrid mechanism, training a non-singleton type-1 IT2 TSK FLS.  

2   Proposed Methodology 

Most of the hot strip mill processes are highly uncertain, non-linear, time varying and 

non-stationary [2,11], having very complex mathematical representations. IT2 NS1 

ANFIS takes easily the random and systematic components of type A or B standard 

uncertainty [12] of industrial measurements. The non-linearities are handled by FLS 

as identifiers and universal approximators of nonlinear dynamic systems 

[13,14,15,16,17]. Stationary and non-stationary additive noise is modeled as a 

Gaussian function centered at the measurement value [1]. In stationary additive noise, 

the standard deviation takes a single value, whereas in non-stationary additive noise 

the standard deviation varies over an interval of values [1].  

The BP learning method for IT2 TSK SFLS has been used as a benchmark 

algorithm for parameter estimation or systems identification [1]. To the best 

knowledge of the authors, IT2 NS1 ANFIS approach has not been reported in the 

literature [1,18]. 



2.1   Hybrid REFIL_BP Method in IT2 ANFIS Training 

The IT2 NS1 ANFIS is trained using the hybrid mechanism: it uses REFIL during 

forward pass for tuning of consequent parameters as well as the BP method for tuning 

of antecedent parameters, as shown in Table 1. It has the same training mechanism as 

the type-1 ANFIS [18, 19], the RLS-BP hybrid combination. 

Table 1.  Two passes in hybrid learning procedure for IT2 NS1 ANFIS (REFIL-BP) 

 Forward Pass Backward Pass 

Antecedent Parameters Fixed BP 

Consequent Parameters REFIL Fixed 

 

The training method is presented as in [1]: Given N input-output training data 

pairs, the training algorithm for E training epochs, should minimize the error function:  
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where 
te  is the error function at time t , 

t

FLSITf x2  is the output of the IT2 

FLS using the input vector 
t

x from the non-singleton type-1 input-output data pairs, 

and 
ty  is the output from the non-singleton type-1 input-output data pairs.  

3   Application to Transfer Bar Surface Temperature Prediction 

3.1   Hot Strip Mill 

Because of the complexities and uncertainties involved in rolling operations, the 

development of mathematical theories has been largely restricted to two-dimensional 

models applicable to heat losing in flat rolling operations. 

Fig. 1 shows a simplified diagram of a HSM, from the initial point of the process at 

the reheat furnace entry to its end at the coilers. 

Besides the mechanical, electrical and electronic equipment, a big potential for 

ensuring good quality lies in the automation systems and the used control techniques. 

The most critical process in the HSM occurs in the Finishing Mill (FM). There are 

several mathematical model based systems for setting up the FM.  



 

Fig. 1. Typical hot strip mill 

A model-based set-up system [20] calculates the FM working references needed to 

obtain gauge, width and temperature at the FM exit stands. 

3.2   Design of the IT2 NS1 ANFIS 

The architecture of the IT2 NS1 ANFIS is established in such a way that its 

parameters are continuously optimized. The number of rule-antecedents is fixed to 

two, one for the roughing mill (RM) exit surface temperature, and one for transfer bar 

head traveling time. Each antecedent-input space is divided in three fuzzy sets (FSs), 

fixing the number of rules to nine. Gaussian primary membership functions (MFs) of 

uncertain means are chosen for the antecedents. Each rule of the IT2 NS1 ANFIS is 

characterized by six antecedent MFs parameters (two for left-hand and right-hand 

bounds of the mean, and one for standard deviation, for each of the two antecedent 

Gaussian MFs), and six consequent parameters (one for left-hand and one for right-

hand end points of each of the three consequent type-1 FSs). Each input value has one 

standard deviation parameter, giving fourteen parameters per rule.  

3.3   Input-Output Data Pairs 

From an industrial HSM, noisy non-singleton type-1 input-output pairs of three 

different product types were collected and used as training and checking data. The 

inputs are the noisy measured RM exit surface temperature and the measured RM exit 

to SB entry transfer bar traveling time. The output is the noisy measured SB entry 

surface temperature. 

3.4   Fuzzy Rule Base  

The IT2 NS1 ANFIS fuzzy rule base consists of a set of IF-THEN rules that 

represents the model of the system. The IT2 NS1 ANFIS system has two 

inputs 11 Xx , 22 Xx  and one output Yy . The rule base has M = 9 rules of the 

form: 
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where iY the output of the ith rule is a fuzzy type-1 set, and the parameters 
i

jC , 

with i = 1,2,3,…,9 and j = 0,1,2, are the consequent type-1 FSs. 

3.5   Input Membership Functions 

The primary MFs for each input of the IT2 NS1 ANFIS are Gaussians of the form: 
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where: k [ 1, 2] k=1,2 (the number of type-1 non-singleton inputs), and Xk(xk)  

centered at the measured input xk =x´k. The uncertain standard deviation 1 of RM exit 

surface temperature measurement was initially set as 13.0°C and the uncertain 

standard deviation 2 of head-end traveling time measurement was initially set to 

1.91s. 

3.6   Antecedent Membership Functions 

The primary MFs for each antecedent are FSs described by Gaussian with uncertain 

means: 
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where
i
k

i
k

i
k mmm 21,  is the uncertain mean, with k =1,2 (the number of 

antecedents) and i = 1,2,..9 (the number of M rules), and 
i
k is the standard deviation. 

The means of the antecedent fuzzy sets are uniformly distributed over the entire input 

space.  

3.6   Consequent Membership Functions 

Each consequent is an unnormalized interval type-2 TSK FLS with 
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and 
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both, are unnormalized type-1 TSK FLS, where 
i
jc  denotes the center (mean) of 

i
jC  and 

i
js  denotes the spread of 

i
jC , with i 1,2,3,..,9 and j 0,1,2. Then i

ly  and 

i
ry are the consequent parameters.  

4   Application Results 

The IT2 NS1 ANFIS (REFIL-BP) system was trained and used to predict the SB 

entry temperature, applying the RM exit measured transfer bar surface temperature 

and RM exit to SB entry zone traveling time as inputs. We ran fifty epochs of 

training; one hundred and ten parameters were tuned using eighty seven, sixty-eight 

and twenty-eight input-output training data pairs per epoch, for type A, type B and 

type C products respectively.  

The performance evaluation for the hybrid IT2 NS1 ANFIS (REFIL-BP) system 

was based on root mean-squared error (RMSE) benchmarking criteria as in [1]. 

Fig. 2 shows the RMSEs of three non-hybrid IT2 TSK ANFIS systems trained 

using only the BP algorithm fort both, antecedent and consequent parameters; all of 

them for fifty epochs’ of training for the case of products of type C. 
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Fig. 2. (*) RMSE IT2 TSK SFLS (BP-BP)    (+) RMSE IT2 TSK NSFLS1 (BP-BP) 

Fig. 3 shows the RMSEs of two IT2 TSK ANFIS systems trained using the 

proposed hybrid REFIL-BP algorithm, for products of type C. For this experiment, 

starting at epoch 1, the IT2 NS1 ANFIS has better performance than the singleton IT2 



ANFIS. When compared to the IT2 TSK NSFLS1 (BP) systems, the proposed hybrid 

approach IT2 TSK NSFLS1 (REFIL-BP) proved to be better in terms of both, the 

temperature prediction with only one epoch  and several epochs of training.  
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Fig. 3. (*) RMSE IT2 TSK SFLS (REFIL-BP)    (o) RMSE IT2 TSK NSFLS1 (REFIL-BP)     

5   Conclusions 

An IT2 NS ANFIS using the hybrid REFIL-BP training method was tested and 

compared for predicting the surface temperature of the transfer bar at SB entry. The 

antecedent MFs and consequent centroids of the IT2 NS1 ANFIS absorbed the 

uncertainty introduced by all the factors: the antecedent and consequent initially 

values, the noisy temperature measurements, and the inaccurate traveling time 

estimation. The non-singleton type-1 fuzzy inputs are able to compensate the 

uncertain measurements, expanding the applicability of IT2 NS1 ANFIS systems.  

It has been shown that the proposed IT2 NS1 ANFIS system can be applied in 

modeling of the steel coil temperature. It has also been envisaged its application in 

any uncertain and non-linear system prediction and control, as in furnace temperature 

control, aerospace stability control, turbine trust control and especially in those 

applications where there are measurements uncertainty. 

The proposed hybrid IT2 NS1 ANFIS (REFIL-BP) system has the good 

performance and stability after only one epoch of training: an important characteristic 

for computational intelligent systems when there is a chance of only one epoch of 

training. It is required to emphasize that the used IT2 ANFIS systems are very 

sensitive to the values of learning parameter’s gain. 
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