
A Comparative Study on

Differential Evolution and Genetic Algorithms

for Some Combinatorial Problems

Brian Hegerty, Chih-Cheng Hung, and Kristen Kasprak

Southern Polytechnic State University, Marietta GA 30060, USA,
chung@spsu.edu

Abstract. This paper compares the performance of optimization tech-
niques, differential evolution and genetic algorithm, for solving some
combinatorial problems. Due to the NP-Complete nature of the N-Queen
and traveling salesman problems, the differential evolution and genetic
algorithm are used for optimizing the performance of the problems. The
criteria used for comparison include 1) convergence speed, 2) computa-
tional complexity, 3) accuracy (near the optimal solution) and 4) stabil-
ity. The empirical study shows that the differential evolution algorithm
has a greater degree of computational complexity for combinatorial prob-
lems than the genetic algorithm. This largely arises from the encoding
scheme used to represent the permutations as vectors and from redefin-
ing those vector operations inherent to differential evolution. The time
required to reach convergence increases greatly as the problem size in-
creases in both problems. The biggest advantage of the differential evo-
lution approach over the genetic algorithm approach is its stability. The
greatest setback for genetic algorithm’s approach is problems with pre-
mature convergence. Our study shows that both approaches are able to
find an optimal solution over time provided that premature convergence
does not occur.

Key words: N-Queen, Traveling Salesman Problem, Differential Evo-
lution, Optimization Techniques, Genetic Algorithms

1 Introduction

The purpose of the evaluation we performed was to provide an analysis of the
performance of the genetic algorithm in comparison to the performance of the
differential evolution algorithm in the realm of combinatorial problem spaces.
The traveling salesman problem and the N -Queens problem are both classic ex-
amples of a combinatorial problem which is NP-Complete. The problems which
are NP-Complete are presumed to have no complete solutions which can be im-
plemented in polynomial time and are therefore good candidates for evolutionary
algorithms. Furthermore the interest in NP-Complete problems is due to the the-
oretical nature of the NP-Complete problem which states that any problem in
NP can be reduced to an instance of an NP-Complete problem in polynomial



time. This means that if we can find an efficient way to solve these combinatorial
problems using evolutionary algorithms we should be able to apply these same
algorithms to many different problems which have no fast algorithmic approach.
We sampled various encodings of the traveling salesman problem and the N -
Queens problem as well as various implementations of the genetic algorithm’s
design and values and the differential evolution’s design and approach.

The paper is organized as follows. Section 2 introduces the Traveling Sales-
man Problem and the N -Queens Problem. Section 3 gives a brief introduction to
Genetic Algorithms and Differential Evolution. Section 4 compares and contrasts
Differential Evolution’s approach to Genetic Algorithm’s approach. Section 5 dis-
cusses the methods used to perform the experiment and the results which were
obtained. Section 6 analyzes the experimental results and draws conclusions from
those findings.

2 Traveling Salesman and N -Queens Problems

The traveling salesman problem is a classic NP-Complete combinatorial opti-
mization problem in which the ’salesman’ attempts to find the optimal path
through a given set of cities visiting each city only once and ending in the start-
ing city in an attempt to minimize the total cost, in time or distance, of travel
between the cities. This problem can be modeled by the attempt to find a Hamil-
tonian tour through a set of vertices in a graph. Much research has been devoted
to the development of efficient heuristics and approximations of lower bounds
for the TSP [7, 9] and a significant amount of research has also been invested
into the use of genetic algorithms and differential evolution in the solving of the
TSP [5, 6]. The applications of solutions to the TSP can be found in many fields
such as schedule planning, processor design, genome sequencing, and in a very
direct manner logistics.

The N -Queens problem has been around since the mid 1800’s and was ini-
tially proposed as a chess puzzle. Later studied by Gauss and Dijkstra and many
other mathematicians and computer scientists the problem has become a clas-
sical one and is frequently used to teach about backtracking algorithms. The
N -Queens problem can be stated formally, given an empty N × N chessboard
we must position N queens on the board in a manner such that no queen can
be attacked by another queen. Since the queen on a chessboard can move in any
straight line in one of 8 directions there are multiple constraints. The N -Queens
problem is also in the group of NP-Complete problems which means that algo-
rithms which are efficient in the solution of this problem space should be able
to be adapted to many other problems with relative ease.

3 Differential Evolution and Genetic Algorithm

The term genetic algorithm was popularized by Holland [4] in the early 1970’s
and further in the late 1980’s by Goldberg [1]. The technique behind the genetic



algorithm is summarized in the Pseudo-code 3.1. The technique comes from Dar-
win’s evolution, creating an initial set of ’chromosomes’ and then letting ’natural
selection’ and ’genetic drift’ take place to evolve the ’chromosome’ into a better
candidate for ’survival’. The specific means by which a genetic algorithm works
lies heavily in the specific coding which is implemented and the implementations
which were used will be discussed in section 5. Each ’chromosome’ in a genetic
algorithm is a single possible solution to the problem which is being solved, and
the ’natural selection’ is a process of crossover where some traits of better per-
forming ’chromosomes’ are incorporated with the traits of other ’chromosomes’
to produce the next generation. The other force present in this evolution is the
’genetic drift’ which is a type of mutation of a ’chromosome’ and is usually rep-
resented by a probability which dictates the chance of random mutation in the
form of inversion of a bit or a similar random change to the ’chromosome’.

Pseudo-code 3.1 Genetic Algorithm
Begin

Generate randomly an initial population of solutions.

Calculate the fitness of the initial population.

Repeat

Select a pair of parents based on fitness.

Create two offspring using crossover.

Apply mutation to each child.

Evaluate the mutated offspring.

All the offspring will be the new population, the parents will die.

Until a stop condition is satisfied.

End.

The term differential evolution was coined by R. Storn and K. Price in their
paper [2] as a product of their search to apply simulated annealing to the Cheby-
shev polynomial fitting problem. The method of differential evolution’s function-
ing is similar to genetic algorithm’s approach and is summarized in the Pseudo-
code 3.2. Differential Evolution like the method of Genetic Algorithms allows
each successive generation of solutions to ’evolve’ from the previous generations
strengths. The method of differential evolution can be applied to real-valued
problems over a continuous space with much more ease than a genetic algorithm.
The idea behind the method of differential evolution is that the difference be-
tween two vectors yields a difference vector which can be used with a scaling
factor to traverse the search space. As in the genetic algorithm’s beginning a
random population is chosen, equally over the problem space, and to create the
next generation an equal number of donor vectors are created through means of

∀i ∈ n : Di = Xa + F (Xb − Xc) where i, a, b, c are distinct . (1)

where Xb and Xc are randomly chosen and Xa is chosen either randomly or as
one of the best members of the population (depending on individual encodings).



A trial vector Ti,j is created by choosing between the donor vector and the
previous generation for each element (j) according to the crossover rate CR[0–
1], for each element in the vector we choose either the corresponding element
from the previous generation vector or from the donor vector such that

∀i, j : if (random < CR‖j = Jrand) then Ti,j = Di,j otherwise Ti,j = Xi,j

(2)
where Jrand is randomly chosen for each iteration through i and ensures that no
Ti is exactly the same as the corresponding Xi. Then the trial vector’s fitness is
evaluated, and for each member of the new generation, X ′

i, we choose the better
performing of the previous generation, Xi, or the trial vector, Ti.

Pseudo-code 3.2 Differential Evolution
Begin

Generate randomly an initial population of solutions.

Calculate the fitness of the initial population.

Repeat

For each parent, select three solutions at random.

Create one offspring using the DE operators.

Do this a number of times equal to the population size.

For each member of the next generation

If offspring(x) is more fit than parent(x)

Parent(x) is replaced.

Until a stop condition is satisfied.

End.

4 A Comparison of Genetic Algorithms and Differential

Evolution

The strength of a genetic algorithm lies in its ability to find a good solution to
a problem where the iterative solution is too prohibitive in time and the math-
ematical solution is not attainable. [1] The way that the Genetic Algorithm
works allows it to find this solution in a fast manner. Another value of the ge-
netic algorithm’s approach is that there can be many different constraints to the
problem based on the specifics of the solution for which one is searching. One of
the most noteworthy facets of the genetic algorithm is the Schema Theorem[4]
which explains the relationship between groups of similar ’chromosomes’ and
their fitness. The theorem shows that a group with above average fitness should
continue to increase it’s fitness over successive generations. Another strength of
genetic algorithm’s approach is that there exists a proof of convergence for an
elitist version of the genetic algorithm. While the concept of the genetic algo-
rithm is not overly complicated, the individual parameters and implementation
of the genetic algorithm usually require a large amount of tuning.



The strength of differential evolution’s approach is that it often displays
better results than a genetic algorithm and other evolutionary algorithms [10,
13, 14] and can be easily applied to a wide variety of real valued problems despite
noisy, multi-modal, multi-dimensional spaces, which usually make the problems
very difficult for optimization. Another impressive trait of differential evolution
is that the parameters CR and F do not require the same fine tuning which is
necessary in many other evolutionary algorithms[11]. Differential evolution has
been used effectively in many applications on various domains such as neural
network learning, digital signal processing, and image processing.

5 Experimental Results

Both the traveling salesman problem and the N -Queens problem offer a variety
of different choices in implementations, each with its own difficulties. One must
choose between different representations such as a permutation array, a permu-
tation matrix, or a stack. There are many trade-offs to consider when choosing
the encoding scheme for a potential solution, in this experiment we chose to use
permutation array encoding to represent both problems. One reason this encod-
ing was chosen was in order to provide relatively similar levels of complexity for
use with the genetic algorithm’s and the differential evolution’s approaches. So
each member of the population was stored as an integer array with N elements,
equal to the number of cities in the traveling salesman problem or the size of
the chessboard in the N -Queens problem. The permutation encoding represents
the path between cities in the traveling salesman problem, and in the N -Queens
problem the ith element in the array represents the ith column on the chess-
board and the ith element’s value, j, represents the jth row on the chessboard.
The genetic algorithm and differential evolutionary algorithm were both applied
exhaustively to the traveling salesman problem with the number of cities being
10, 15, 20, 25, and 50, and to the N -Queens problem with similar sizes for N .
When possible the same functions were used in both algorithms, for example in
the generation of a random sample population for the traveling salesman prob-
lem a single method call was developed to use the Fischer-Yates shuffle [12].
This was done in an attempt to create similar computational complexity and
only measure the differences in the algorithms not the encodings.

In the specific encoding scheme for the genetic algorithm crossover tech-
nique candidates were chosen using roulette wheel selection and the crossover
was accomplished by a modified partial order crossover. The mechanism of that
modified partial order crossover is as follows: a crossover point was chosen in
the parents X and Y at random and the child A was generated by copying the
elements from X before the crossover point into A and removing those cities
from Y . Then the remaining cities in Y were copied into A relative to their
respective order in Y , this guarantees that no cycles are formed. Mutation was
accomplished by switching the order of the city to be mutated with another city
which was randomly chosen thus ensuring a valid path. Because it is very likely
as the genetic algorithm converges that the best solutions will be lost in the



successive crossovers and mutations the scheme of Elitism was used in order to
increase the efficiency of the algorithm. In Elitism the best performing member
of the previous generation is copied into the next generation. In this encoding no
effort was made to make use of any traveling salesman problem heuristics such
as the n-opt switch, nearest neighbor heuristics, Lin-Kerringhan etc, because
this was an attempt to compare the basic functioning of the genetic algorithm
on a combinatorial problem space, not for a specific traveling salesman problem
genetic algorithm.

The encoding used for the differential evolution’s approach to the traveling
salesman problem also used arrays of permutations, however an additional level
of abstraction was used to allow us to perform addition, subtraction and multipli-
cation on permutations. Lehmer code [3] is used to represent the permutations
during the generation of the donor vector. The Lehmer code of permutations
forms a bijection between the normal representation of a permutation and a
representation formed by counting the numbers to the right which are larger
than the current number, this relationship is formed by the use of modulo oper-
ations. This results in a greater level of computational complexity, as will be seen
in the results below. The generation of the donor vector uses DE/best/1 [8] in
which the most fit member of the population is chosen for Xa, and two randomly
chosen other members are chosen for Xb and Xc, according to the function

Di = Xbest + F (Xb − Xc). (3)

The addition and subtraction is a simplistic task due to the nature of the Lehmer
code, the numbers are all added, subtracted and multiplied by the scaling factor
with no restrictions, and at the end of the generation of a donor vector member
we use a modulo operation on each element in the Lehmer coded version of
the permutation such that it ensures a valid transition back to a non-Lehmer
code permutation. The generation of the trial vector is a little more complex.
Starting with the element at index 0 in the array we choose the city, A, from
the donor vector or the previous generation based on the CR as is typical for
differential evolution. For each selection after that the selection process is the
same, but we select the city which follows A in the donor vector or previous
generation, depending on CR. In the case that this city is already present in
the ’child’ we choose the city following that city. This ensures that we do not
create an invalid permutation but also adds to the computational complexity of
the differential evolution’s method. However, this method adheres to the basic
logic of differential evolution and so it was chosen to maintain the integrity of the
experiment. As in the genetic algorithm’s design we made no effort to implement
any heuristics.

The functioning of the genetic algorithm used in the N -Queens problem
is similar to the implementation used for the traveling salesman problem. A
tournament-based selection for obtaining crossover candidates was used. First, a
random selection of 10 solutions was created as the tournament pool. Next, the
top four in terms of fitness were chosen for potential mating. Finally , a random
number was drawn, if this number was less than the crossover rate then the



pairs would mate. The crossover algorithm used is a partially mapped crossover
as demonstrated in Figure 1. Two points A and B were chosen at random such
that A < B. The first parent passed in, X , is considered to be the dominant
parent and the child will most likely contain similar genes to that parent. The
first step begins by copying all of the elements in X between A and B and giving
them to the child in the range of A to B. Next, we start scanning the second
parent, Y , again starting in the range A to B. Taking the ith element’s value,
j, from the X , we find Y ’s jth element value k. We then give Y ’s ith element
value to the child’s kth element value. This step continues until the range A to
B is exhausted. If a value is already in the kth element of the child, then the
mapping begins again with the kth value in X until an open slot is found in
the child solution. Finally, the rest of the element values in Y are copied into
the child. Because this procedure produces only one child the algorithm will be
repeated with X and Y switching roles to produce the second offspring. The
mutation operator is represented by simply choosing two elements at random in
the solution and swapping their values. The genetic algorithm used a selection
scheme that represented a queue. Basically, the oldest solutions were lost. This
technique was chosen after unsuccessful approaches of elitism and roulette-wheel.
The need for a different selection criteria was due to problems with premature
convergence. It is believed that the newer solutions did not have enough time to
get an opportunity to cross and mutate.

Fig. 1. Implementation of Partially Mapped Crossover



The differential evolution’s ’crossover’ technique is similar to that of the
genetic algorithm. In fact the differential evolution uses the partially-mapped
crossover, but the selection of the dominant parent is determined by the variable
CR. Ordinarily, the crossover approach is to scan the solution arrays and to
select the donor vector element value if a random number is less than the CR.
But this would not preserve the permutation, so this approach was adjusted.
A random value is still generated, but the solutions are not scanned element
by element. Instead, if the number is less than the CR the original solution is
set as the dominant parent in the partially-mapped crossover. Otherwise, it is
the donor vector’s solution whose genetic makeup we try to preserve. Since the
differential evolution’s mutation equation uses vector addition and subtraction,
these operators needed to be defined appropriately for the permutation arrays.
The vector addition/subtraction was constructed to utilize the definition of a
permutation matrix. The second operand would be the column permutation
mapping matrix for the first. For example, to perform X −Y , X will be used as
a 1×N row matrix and Y will become an N×N identity matrix. First, the values
of Y s elements are reversed and placed in an N × 1 column matrix. The column
matrix is expanded into a N × N identity matrix with a 1 being placed in the
column that represents the original value of the column matrix. All other columns
in the row contain a 0. The matrices are multiplied to produce a new 1×N row
matrix as seen in Figure 2. Since the values in the permutations are integers the
scalar multiplication of the mutation factor F also needed reconsideration. This
operation was defined as a sweep over the elements in the intermediate solution
and swapping the element value with another random element if a randomly
generated number was less than F .

Fig. 2. Implementation of Permutation Matrix Operations

For the Traveling Salesman Problem the testing was performed on three
different types of city sets: a circle, a rectangular grid, and a random group.
The circle is a group of evenly distributed points on the circumference of the



circle, this test approximates a single optimal solution with no local minima to
stall the algorithm. The rectangular grid offers a variety of local minima and
several separate but equal global minima. The random group of cities offers the
greatest challenge to the algorithms due to fact that there are often various local
minima of varying proximity to the global minimum. The fitness function for
both algorithms was a geometric calculation of the path between the cities, with
a known optimum for the circular and rectangular grid sets. For the random
group of cities the lowest value found by the genetic algorithm or differential
evolution, each run 50 times on the problem, was used as the relative optimum for
calculations of stability. Various sizes were used for all three types of city sets and
for each city set size a stopping point was set that would terminate the algorithm
after a certain number of generations. The number of generations which was
chosen as a stopping point was significantly higher than either algorithm needed
based on repeated tests with extremely long runs. Multiple tests were performed
in order to determine the best values of CR and F for the Differential Evolution
variables and similarly for the Genetic Algorithm’s variables. In all tests the
population was kept equivalent between the Genetic Algorithm and Differential
Evolution. For the Differential Evolution CR was set to 0.3 and F was set at 1.1.
For the Genetic Algorithm we chose a crossover rate of 45% and a mutation rate
of 2.5% based on similar testing. Evaluation of the Differential Evolution and
the Genetic Algorithm in the TSP are as follows. The Differential Evolution has
an extremely low percentage of finding non-optimal solutions, and when they
occur the average Differential Evolution non-optimal solution is better than the
Genetic Algorithm’s average non-optimal solution. The Differential Evolution
converges between two to five times slower (in number of generations) and seems
like the gap will continue to increase as the problem size increases. The Genetic
Algorithm gets quick convergence with the trade-off of an increased probability
of finding a local minimum and not a global minimum. Furthermore the Genetic
Algorithm has a problem with staying in that non-optimal converged point and
never leaving that local minimum even when given a surplus of running time
(in generations). The Differential Evolution, on the other hand, proves much
more robust and will continue to improve until an optimal solution is found,
very rarely staying in a non-optimal solution for a significant period of time.

For the N -Queens problem the testing was performed in a loop with the stop-
ping condition set to a fitness of 0. It was found that if the crossover rate for the
genetic algorithm was any lower than 100% and the probability for crossover was
not met then the previous generation and current generation would be exactly
the same. This would cause a wasted iteration of the algorithm. To prevent this
the crossover rate for the Genetic Algorithm was kept at 100%. Similar testing
resulted in a value of 20% for the mutation rate. Even so, the genetic algorithm
suffered from premature convergence for several population sizes. The values for
the Differential Evolution’s variables were set to CR = 0.9 and F = 0.5 based
on tests to determine the optimal settings for those parameters. The differential
evolution approach did not suffer from premature convergence at all. Both algo-
rithms were tested for N sizes of 10, 15, 20, and 25. First, each value of N was



tested with population sizes of 5, 10, 25, 100, 500, and 1000. Next, each combina-
tion of N size and population size was given 10 trial runs recording the number
of generations, running-time, and whether the solution discovered an optimal
solution. The number of generations and runtime numbers were averaged. In
most accounts differential evolution proved to find an optimal solution in fewer
generations. The exception occurred with a population size of 5. Both algorithms
iterated through a large number of generations for that population size, ranging
from the 30,000 to 200,000. However, just by increasing the population size to
10, differential evolution saw a great improvement visible in a reduction in the
number of generations. Dropping by about 75% in all cases. Another important
number calculated was the standard deviation of the number of generations in
each case. For all population sizes, except for 5, the standard deviation for dif-
ferential evolution was very low compared to that found for genetic algorithm’s.

6 Conclusions

It would seem from this set of experiments that the approach of Differential
Evolution proved to be much more robust. In both problem spaces the Genetic
Algorithm’s results were less valuable than those of Differential Evolution’s re-
sults. However, there is value in the relative speed of the Genetic Algorithm’s
results in the Traveling Salesman Problem if a local minimum will be sufficient. In
the Traveling Salesman Problem both algorithms produced good results quickly,
but the Differential Evolutionary Algorithm continued to improve on the tour
of the cities, where the Genetic Algorithm could be observed to stall in a non-
optimum solution with much greater frequency (Table 1). As both algorithms
produced good results for small sized N , differential evolution had the advantage
of stability as can be seen by the standard deviation (Table 2) of generations.
In either algorithm, increasing the population size along with the value of N

has an impact on the iteration time for a generation. This is as expected. It
is important to note that with larger N values the number of generations was
larger for genetic algorithm but the running time was comparable and in some
cases better than differential evolution. This is due to the overhead caused by the
computation complexity of differential evolution, in fact a measurement of the
time to complete a single generation for Differential Evolution is on average four
times larger than it takes to complete a similar generation (based on population
size and problem size) for the Genetic Algorithm. But for larger population sizes
it seems that differential evolution can outperform the genetic algorithm in both
generations and runtime, as can be seen with the results from N = 20, pop-
ulation sizes = 100, 500, 1000. All of these facts make Differential Evolution’s
approach a better solution to these combinatorial problems.

The next question is why Differential Evolution’s results are superior to Ge-
netic Algorithm’s. In the Traveling Salesman Problem a likely reason lies in the
depth of the operations which are performed on the permutations. In the Differ-
ential Evolution approach each permutation goes through a much more involved
type of mutation in the generation of the donor vector than in the mutation



Table 1. Testing Random City Sets 50 Evaluations on each set.

Traveling Salesman Problem

Optimum Found
(50 tests)

Average Generations

DE GA DE GA

94% 86% 4770.84 1970.76
100% 100% 3799.60 1220.62
98% 50% 3707.20 2182.70
100% 98% 3371.96 1034.36
100% 98% 3696.26 1333.08
94% 92% 3443.04 1448.44
100% 72% 4254.22 2568.72
88% 76% 4378.88 2202.02
100% 98% 3240.20 1108.44
94% 82% 3541.20 1489.94
98% 98% 3734.76 1447.90
90% 42% 3992.72 1875.68
80% 22% 4206.06 1787.18
82% 34% 3972.82 1829.40
94% 72% 4095.02 1790.36
96% 68% 2648.48 1822.92
100% 86% 3344.60 1267.10
96% 66% 4567.56 1600.38
96% 98% 3010.32 974.78
94% 84% 2941.14 2262.58
100% 78% 3228.90 1418.54



step of the Genetic Algorithm. The generation of the trial vector also allows for
a greater reach in to the search space by taking individual elements from each
permutation than the crossover stage permits with a single break and switch in
the Genetic Algorithm. In the N -Queens problem the issue seems to be limited to
genetic algorithm’s tendency to find a good but non-optimal solution quickly but
require a long time to transition towards the optimal solution from this point.
In both problems the application of heuristics specific to that problem would
greatly increase the efficiency and thus value of both the Genetic Algorithm and
Differential Evolution. It would seem though that while both algorithm’s have
difficulties in adapting to a combinatorial and non-continuous problem space
the basic mechanisms of differential evolution’s optimization techniques provides
better results. It is likely the case that further investigation into the adaptation
of those optimization techniques from vectors into combinatorial types such as
permutations and sets would result in large gains in the value of Differential
Evolution’s contribution to the optimization of combinatorial problem spaces.

Table 2. Testing Different Problem Sizes, 10 Evaluations on each set with standard
deviation of generations.

N-Queens Problem

Problem Size and
Population Size

Optimum Found
(10 tests)

Average Generations

DE GA DE GA

15× 5 100% 100% 116972.60 92625.50
15× 10 100% 100% 21482.90 99246.60
15× 25 100% 100% 7993.10 58475.60
15× 100 100% 100% 800.70 6129.00
15× 500 100% 90% 55.00 11960.11
15× 1000 100% 100% 40.80 822.80
20× 5 100% 90% 204162.80 49933.33
20× 10 100% 100% 52784.20 81444.50
20× 25 100% 100% 10870.60 27165.70
20× 100 100% 100% 1421.10 8028.80
20× 500 100% 80% 306.50 3085.75
20× 1000 100% 80% 235.40 1575.50

Standard Deviation 7428.66 64112.45

References

1. Goldberg, David E., Genetic Algorithms in Search, Optimization and Machine
Learning, Kluwer Academic Publishers, Boston, MA. (1989)



2. Storn, R. and Price, K., ”Differential Evolution — a Simple and Effecient Heuristic
for Global Optimization over Continuous Spaces”, Journal of Global Optimization,
Kluwer Academic Publishers, 11 (1997) pp. 341–359.

3. Lehmer, H., ”Teaching combinatorial tricks to a computer”, In Proc. Sympos. Appl.
Math. Combinatorial Analysis, 10, Amer. Math. Soc., Providence, RI, (1960), pp.
179–193.

4. Holland, J. H., Adaptation in natural and artificial systems. University of Michigan
Press, Ann Arbor, MI, (1975).

5. Peško, Š., ”Differential Evolution for Small TSPs with Constraints”, Proceedings of
the fourth International Scientific Conference: Challenges in Transport and Com-
munications, Part III, September 14–15, Pardubice, Czech Republic, (2006), pp.
989–994.

6. Sauer, J. G. and Coelho, L., ”Discrete Differential Evolution with local search to
solve the Traveling Salesman Problem: Fundamentals and case studies,” Cybernetic
Intelligent Systems, 2008. CIS 2008. 7th IEEE International Conference on, (2008)
pp. 1–6.

7. Applegate, D., Cook, W., Rohe, A., ”Chained Lin-Kernighan for large traveling
salesman problems.” INFORMS J. Comp. 15 (2003) pp. 82–92.

8. Price, K., Storn, R., Lampinen, J., Differential Evolution — A Practical Approach
to Global Optimization, Springer, Berlin, (2005).

9. Applegate, D., Bixby, R., Chvatal, V., Cook, W., The Traveling Salesman Prob-
lem: a Computational Study (Princeton Series in Applied Mathematics), Princeton
University Press, (2007).

10. Xu, Xing and Li, Yuanxiang, ”Comparison between Particle Swarm Optimization,
Differential Evolution and Multi-Parents Crossover,” Computational Intelligence
and Security, 2007 International Conference on, (2007), pp. 124–127.

11. Mezura-Montes, E., ”Nature-Inspired Algorithms Evolutionary and Swarm Intel-
ligence Approaches”, A Tutorial in MICAI 2008, (2008).

12. Fisher, R. A. and Yates, F., Statistical tables for biological, agricultural and medical
research (3rd ed.). Oliver & Boyd, London. (1948), pp. 26–27.

13. Codreanu, I., ”A parallel between differential evolution and genetic algorithms with
exemplification in a microfluidics optimization problem.” Semiconductor Confer-
ence, 2005. CAS 2005 Proceedings. 2005 International 2, (2005), pp. 421–424.

14. Sentinella, M. R., ”Comparison and integrated use of differential evolution and
genetic algorithms for space trajectory optimization,” Evolutionary Computation,
2007. CEC 2007. IEEE Congress on,, (2007), pp. 973–978.

15. Bhandari, D., Murthy, C. A., Pal, S. K., ”Genetic algorithm with elitist model
and its convergence.”, International journal of pattern recognition and artificial
intelligence, 10, (1996), pp. 731–745.


