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{ivan.cruzac@gmail.com,mornelas67@yahoo.com.mx,artha@cimat.mx}

Abstract. This paper presents an efficient hybrid algorithm based on Particle
Swarm Optimization (PSO) with discrete values using Simulated Annealing (SA),
denomined (DPSOSA), for the optimum design of multilevel phase computer
generated holograms (CGH’s). This algorithm deals with discrete values using
the periodicity of the Discrete Fourier Transform to improve the diffraction ef-
ficiency of CGH’s. The experimental results indicate that DPSOSA can enhance
the performance obtained with Genetic Algorithm (GA), Discrete Particle Swarm
Optimization (DPSO) and Iterative Fourier Transform Algorithm (IFTA). The be-
haviour of DPSOSA is discussed.
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1 Introduction

Computer generated holograms (CGH’s) are attractive for a variety of applications,
when reduced dimensions, light weight, and low replication cost are required. Some
applications include optical testing, image displays, optical security and metrology, to
mention but a few. A number of algorithms have been proposed for designing com-
puter generated holograms [1][2]. The Iterative Fourier Transform Algorithm (IFTA)
is one of the most popular. This algorithm was developed by Gerchberg and Saxton
in 1972 [3]. The IFTA is efficient and can handle large amounts of data, however, the
algorithm is sensitive to initial parameters and it is prone to stagnate in local minima.
This study proposes the use of global optimization algorithms that do not depend on the
starting parameters of IFTA, and that are effective in avoiding local minima. The paper
is organized as follows; section 2 deals with the CGHs design using the IFTA, whose
drawback is the inability to escape from local optima. Section 3 describes evolutionary
and bio-inspired algorithms like Genetic Algorithm and Particle Swarm Optimization
in discrete domain. In section 4 it is explained the proposed hybrid algorithm DPSOSA.
Section 5 is concerned with the experimental setup, the results, their analysis and dis-
cussion. Finally section 6 presents some conclusions and future work.
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2 CGH’s design by using IFTA

The algorithm for hologram calculation with a standard version of IFTA [4], is shown
in figure 1. The holograms were designed to work for transmission by modulating only
the phase of the incident light and reconstructing the image of the desired object at the
far field. Phase holograms are more attractive than amplitude holograms, because the
former provide higher diffraction efficiency since ideally no energy is absorbed.
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Fig. 1. Iterative Fourier Transform Algorithm Diagram (IFTA).

The first step is to calculate the transmission function of the hologram (Gj(u)) from
the original object go(x) by means of the Discrete Fourier Transform (DFT). The opera-
tors U and X are the rules of the Fourier plane (u) and the object plane (x), respectively.
The U operator replaces the module of Gj(u) by the unit value in the Fourier plane and
retains its phase. The X operator maintains the phase of gj(x) and replaces its amplitude
by the original signal go(x). The common stop criterion of IFTA is by the approxima-
tion error between the original and the reconstructed signals, or by prefixed number of
iterations. Due to limitations in the manufacturing methods of diffractive elements, the
next step is to discretize the continuous transmission function obtained by IFTA in some
number of phase levels (N). Then, the discrete phase function is encoded as an array of
pixels in gray scale, thereby generating the hologram mask. IFTAs problem resides in
the fact that it cannot achieve the established theoretical diffraction efficiency given by
equation 1 [5], and shown in table 1. The efficiency problem is caused by stagnation at
local minima.
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Table 1. Theoretical diffraction efficiencies as a function of the number of phase levels.

2 phase 3 phase 4 phase 5 phase 6 phase

levels levels levels levels levels

40.5% 68.3% 81% 87.5% 91.1%

The CGH’s design is a common NP-hard combinatorial optimization problem. The
objective is, applying IFTA, to obtain output holograms which will initialize the evo-
lutive algorithms. These algorithms will search the optimal combination of discretized
pixel values that maximizes the diffraction efficiency, given by equation 2. This ratio is
the fitness function for the evolutive algorithms.

Diffraction Efficiency =

∑M−1
x=0

∑N−1
y=0 ImgRecons(x, y)

∑M−1
x=0

∑N−1
y=0 Img(x, y)

∗ 100 (2)

Where ImgRecons (x, y) denotes reconstructed image and Img (x, y) is the original one.

3 Optimization Techniques

Evolutionary algorithms (EA’s) [6] are bio-inspired metaheuristics that have proved
very robust to solve hard or complex problems. These are population based algorithms,
where every individual of the population encodes a candidate solution.

The mechanic of the algorithm is to evolve and improve the quality of the population.
The repeated application of selection, reproduction and mutation operators produces
variations with improved quality. A fitness function measures the goodness or quality
of the solution carried by every individual.

3.1 Genetic Algorithms

Genetic algorithms (GA) have had a great deal of success in solving search and opti-
mization problems [7][8][9]. The first step of a GA is to create the initial population,
and to measure the quality of every individual with the fitness function. A selection op-
erator, such as binary tournament or proportional, is applied and a temporal population
with above average fitness is stored. Then, a reproduction operator, such as one point
or two-point crossover, is applied to the pool of selected individuals and new individ-
uals are spawned. After the application of the mutation operator, the new individuals
populate the new generation.
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3.2 Discrete Particle Swarm Optimization

Particle Swarm Optimization algorithm introduced by Kennedy and Eberhart [10], is
applied in continuous spaces optimization.

Since its publication, many related works have appeared to adapt this technique for
solving problems involving discrete spaces [11]. Equations 3 and 4 are preserved in
modified algorithms in order to work in a discrete manner.

Vi(t+ 1) = Vi(t) + c1ω ∗ (Yt −Xi(t)) + c2ω ∗ (Gt −Xi(t)) (3)

This is the velocity equation where c1 and c2 are the inertia constants, w is learning
factor, G is gbest i.e. the particle with the best fitness, Y is the best position of the
present particle X. Once the velocity term has been computed the new particle position
is calculated via equation 4.

Xi(t+ 1) = Xi(t) + Vi(t+ 1) (4)

The adaptation consists in the use of these canonical PSO equations, which are
applied to the original population. Then the modified population is checked against
the original one. Wherever a value is not repeated in corresponding individuals, they
are marked as feasible for mutation. Finally, these individuals are replaced by feasible
solutions by using a uniform random number generator. This is called random mutation.

3.3 Simulated Annealing

Simulated Annealing (SA) is a stochastic optimization algorithm that leads to a station-
ary state which is described by the Boltzmann distribution [12].

In essence this procedure resembles cooling a crystal down slowly such that defects and
other lattice impurities can heal out and a pure crystalline structure (global minimum)
is achieved at low temperature [13].

Its equilibrium properties at a temperature Temp are determined by the Boltzmann dis-
tribution with equation 5, and ∆ is the difference between the current and the new
solution.

Bolt = e−∆/Temp (5)

4 Hybrid Discrete Particle Swarm Optimization with Simulated
Annealing Algorithm Proposed

A promising strategy has been the combination of different metaheuristics in order to
exploit their strengths and thus obtaining better results for difficult problems, where no
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good approximations are achieved by using a single technique as shown in [14][15].

The related works with the fact of combining Particle Swarm Optimization and Simu-
lated Annealing have demonstrated to obtain acceptable results due to the fact that ve-
locity and position of PSO equations can be adapted to work in discrete environments
as shown in [16]. Below the proposed algorithm DPSOSA is presented.

Algorithm 1 DPSOSA Algorithm
1. Initialize the control parameters,ω,c1, c2,γ,D,θ, iBest, t=0, Temp, α, ψ
2. Create and initialize the population Pop[κ,D] to apply Simulated Annealing,
3. SimulatedAnnealing(Temp, α, ψ, Pop)

3.1 for each individual ϕ do
3.2 while(Temp > ψ) do
3.3 next = Permutation (current)
3.4 ∆ = f (next) - f (current)
3.5 if(∆ > 0)
3.6 Assign next to current
3.7 else if(ϕ Mod 2 == 1)
3.8 Apply Boltzmann Operator
3.9 Decrement Temp with α
3.10 end//while end//for
3.11 return Pop//to Initialization of DDE

4. while stopping condition not true do
5. for each individual Xι (t) ε Pop[t,D] do
6. DiscreteMutation(Xι,θ)
7. Evaluate the fitness f (Xι)
8. if f (Xι) is better than f (Xpbest)
9. Add Xι to Xpbest

10. if f (Xι) is better than f (Pop(iBest))
11. Add Xι to Pop(iBest)
12. Update Velocity (Xι,ω,c1,c2)
13. Update Position (Xι)
14. end//for

15. end//while
16. return Pop(iBest)//as the solution

Where c1 y c2 are inertia weights, γ individuals in population, ω is learning factor, θ
is mutation percentage, iBest index best solution and Temp, α, ψ are control parameters
of Simulated Annealing.

The Simulated Annealing algorithm allows to initialize the population of DPSO, yiel-
ding greater variability to the information that the individual gets directly from IFTA.
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5 Experiments

In this section, it is compared the DPSOSA model with the previously described algo-
rithms. All the models have been tested with the same image and conditions; the image
size is 128 x 128 pixels. It is analyzed the performance to compare these models in 30
executions.

The features of algorithms are described as follows:

– Genetic Algorithm with Proportional Selection (GAP):
• 20 individuals
• 100 generations
• crossover = 80%
• mutation = 5%

– Genetic Algorithm with Tournament Selection (GAT): same conditions GAP.
– Genetic Algorithm with Boltzmann Selection (GAB): same conditions GAP.
– Genetic Algorithm with Sigma Scaling Selection (GAS): same conditions GAP.
– Discrete Particle Swarm Optimization (DPSO):

• 20 particles
• 100 iterations
• inertia = 0.7
• learning factor = 2
• mutation = 50%

– Discrete Particle Swarm Optimization with Simulated Annealing (DPSOSA):
• same conditions DPSO
• Temp = 10
• alpha =0.999
• epsilon=0.01

In table 2 and 3, it is showed the maximum and average diffraction efficiencies
reported by the algorithms.

Table 2. Maximum diffraction efficiencies obtained by the implemented algorithms.

XXXXXXXXXMethod
Phase levels

2 3 4 5 6

IFTA 36.8832 61.3139 71.9660 76.9917 79.9846

GAP 38.2017 64.1379 75.0170 79.9976 82.6758

GAT 38.1199 63.9807 74.6681 79.7798 82.7991

GAB 38.0825 63.4223 74.5197 79.7394 82.7411

GAS 38.1085 63.3135 74.5224 79.8197 82.6829

DPSO 38.1853 63.3100 74.2949 79.2902 82.0156

DPSOSA 38.3106 63.4389 74.9432 80.1602 83.0577
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Table 3. Average diffraction efficiencies reported by the algorithms.

XXXXXXXXXMethod
Phase levels

2 3 4 5 6

IFTA 36.2821 60.7147 71.6853 76.7688 79.6112

GAP 37.8340 63.3993 74.4306 79.5346 82.5065

GAT 37.5643 63.2141 74.3967 79.4963 82.5386

GAB 37.5849 63.1036 74.3460 79.4334 82.4670

GAS 37.4874 63.0898 74.2884 79.4244 82.4182

DPSO 37.8008 62.8782 74.0260 79.0729 81.8170

DPSOSA 37.9287 63.3163 74.7011 79.9399 82.8017

Figure 2 shows the reconstructed images and their hologram of 256x256 pixels with
2,3 and 4 phase levels. In figure 3 it is showed the experimental image of 128x128 pixels
used in the implemented algorithms. Figures 4, 5 and 6 show the diffraction efficiency
comparisons among the algorithms.

Fig. 2. Reconstructed image and their hologram with a) 2 phase levels, b) 3 phase levels, c) 4
phase levels.
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Fig. 3. Experimental Image.

Fig. 4. Diffraction efficiency comparison between IFTA and theoretical values.

Fig. 5. Diffraction efficiency comparison between Genetic Algorithms and theoretical values.
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Fig. 6. Diffraction efficiency comparison among PSO, PSOSA and theoretical values.

6 Conclusions

In this work a hybrid algorithm design composed by robust global optimization tech-
niques has been presented, demonstrating to obtain a better performance during the
test. Discrete Particle Swarm Optimization with Simulated Annealing obtained the best
solution for the CGH’s design. Ideas for future work involve extending the proposed
strategies to solve problems including another heuristics. It would be also interesting to
work the approach for including not uniform domain size for every variable.
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