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Abstract. In the study of nonstationary signals, visualization of the
time-frequency representation is a key figure for understanding the sig-
nal frequency content and its point of emergence within time. On the one
hand, we can find the well studied non parametric techniques based on
the Wigner-Ville distribution, employed on the telecommunications and
radar signal analysis. On the other hand, we find the parametric mod-
eling of the frequency content of a nonstationary behavior by means of
an autoregressive (AR) filter, which throught its polynomial coefficients,
leads us to the filter poles and the spectral components they represent.
The adaptive hereditary computation technique, based on the acquisition
of the time variable correlation function of the signal through an autore-
gressive moving average (ARMA) model, allows us a fine pole tracking
from signal contiguous sections. Two validation examples are shown: a
bat sonar signal for comparison with Wigner-Ville approach, and a nor-
mal newborn cry signal for the tracking ability of highly nonstationary
signals.

1 Introduction

Nonstationary signals are those which present a time variable change of their
statistical properties and frequency content [1]. For instance, we can find them
in the areas of geology on seismic events [2], of telecommunications on frequency
modulation, of radar on echo signal frequency shift [3], and of biomedicine over
Heart Rate Variability (HVR) studies [4], electroencephalogram (EEG) charac-
terization [5], newborn cry [6] and children speech analysis [7], among others.
The wide spread presence of these kind of signals has required to study them
deeply in order to understand their behavior; for example, some of them present
a chaotic sequence of frequency content in time like biomedical signals, some
others a linear or nonlinear frequency shift while being transmitted or received
in fm modulation or radar signals, respectively.
In this work, a pole tracking method allows us to follow a hyperbolic (nonlinear)
frequency pattern obtained from a bat sonar signal and the nonstationnary be-
havior of a newborn cry record. This technique is a good choice in order to study
narrowband and wideband signals [8]. The hereditary computation of the sig-
nal correlation function, gives us the possibility to determine the time variyng
parameters between windows of time authomatically without windowing nor



overlapping. This adaptive task is carried out by an autorregressive moving av-
erage (ARMA) model, which employs the projected error from the estimated
signal as the model input.

2 Adaptive Hereditary Computation

Adaptive hereditary computation has its origin in the area of systems identifi-
cation by employing an ARMA model, in order to fit a stochastic realization to
some measured output yτ , τ = 1, ..., t of an unknown system. The one-step ahead
predictor therefore implemented, estimates the model coefficients without using
a non linear optimization technique, as it is the case for gradient based or Gauss-
Newton techniques [9]. Instead of it, recomputation of τ = 1, . . . , T past samples
is developed by using the parameters obtained at time t ; hence, the correlation
function is time variyng and up to date, avoiding in this way calculation errors
due to incomplete correlation terms obtained with standard estimation methods.

2.1 ARMA form

The one-step ahead predictor in ARMA form is written as follows:

ŷt =

n∑
i=1

aiŷt−i +

n∑
j=1

biỹt−j (1)

where ỹt = yt − ŷt and ai,bi are the autorregresive and input coefficients,
respectively. This expression has beed derived from the simpler moving average
(MA) form:

ŷt =

n∑
i=1

aiyt−i (2)

which is an interesting point of view, considering the rational form (1), as a
more efficient and rugged manner of modeling linear time series.

2.2 Hereditary computation

As it was stated in the begining of this section, the transient optimization ap-
proach can be developed to the price of hereditary computation of the model



coefficients, presenting a linear t-growing memory of size nt, with n as the sys-
tem dimension or delay. Hence, the ARMA form having these characteristics is
written as:

ŷtτ =

n∑
i=1

atiŷ
t−i
τ−i + btiỹ

t−i
τ−i, ∀τ = 1, . . . , t. (3)

In order to obtain the model parameters, it is necessary to employ an eval-
uation criteria of how well (3) performs; this criteria consists on minimizing the
mean square error (MSE) between the time series yt and the predictor ŷtτ :

J tT = EtT [(yτ − ŷtτ )2] =
1

T

t∑
τ=t−T+1

(yτ − ŷtτ )2 τ = 1, . . . , T. (4)

where T is the time horizon of hereditary computation or re-computation of
the estimated samples. This means that the estimator adapts its horizon every
T samples to get the time-variyng parameters ati, b

t
i that characterize the signal

of interest.
Derivating (4) with respect to the model parameters and separating terms to each
side of the equality, leads us to the normal equations, see [10], which contain the
time-varying correlation and intercorrelation terms:[∑t

τ=t−T+1 ŷ
t−i
τ−iŷ

t−i
τ−i

∑t
τ=t−T+1 ŷ

t−i
τ−iỹ

t−i
τ−i∑t

τ=t−T+1 ỹ
t−i
τ−iŷ

t−i
τ−i

∑t
τ=t−T+1 ỹ

t−i
τ−iỹ

t−i
τ−i

] [
ati
bti

]
=

[∑t
τ=t−T+1 yτ ŷ

t−i
τ−i∑t

τ=t−T+1 yτ ỹ
t−i
τ−i

]
i=1. . . n.(5)

Once the aforementioned polynomal parameters ati are calculated, it is possi-
ble to extract the system poles in the view of analyzing the frequency domain
characteristics of the signal or system explored, as explained in next section.

3 Pole Tracking Method

Pole Tracking algorithms have found their path on the autorregresive (AR) mod-
els implemented for recursive system identification [11]. They are useful because
they are simple to implement and have good spectral definition, mostly on wide-
band signals [8].
As it can be observed on expression (2), when replacing yt = ŷt + ỹt to have
(1), we realize that the numerator and denominator coefficients are the same
[12]. In the case of analyzing a signal with changing mean value, the moving
average coefficients will present an average of the autorregresive ones. There-
fore, assuming this is not the case for simplicity, the moving average polynomial



equals to one. Then, the resulting transfer function for denominator polynomial
coefficients (AR coefficients) computation is written as:

H(z) =
1∑n

i=1 aiz
−i (6)

which can be factored to obtain the poles of the signal/system of interest:

H(z) =
zn∏n

i=1(z − zi)
=

zn∏n
i=1

−→
Pi

(7)

where zi are the poles of dimension i = 1, . . . , n and
−→
Pi the corresponding vectors

from any point z in the complex plane to each of the n poles of (7), see [13].

The power spectral density (PSD) function can therefore be calculated throught
the formula:

P (z) =
σ2

(
∏n
i=1 |(z − zi)|)2Fs

(8)

where σ2 is the signal variance, Fs the sampling frequency, z = ej2π/Fs and
zi = ej2πfi/Fs , para i = 1, . . . , n.

The pole tracking task can be performed, with expression (7), by obtaining the
frequency asociated to every pole of the model process; this is done by extracting
the phase angle θi of the zi, i = 1, . . . , n poles through the expression:

fi =
θi
2π
Fs (9)

In order to study the spectral characteristics of (8), it is important to mention
that the closer the pole is to the unit circle given by z = ej2π/Fs , the higher its
peak or contribution will be to the total PSD of the signal or system.

3.1 Model Dimension

Model dimension selection is an important matter in terms of good quality es-
timation of signal or system characteristics, due to the fact that a low model
dimension could lead to poor results; while a high dimension selection might
introduce undesired frequency components [8]. The work of Varghese et al. [14]
reports probabilistic simulations for this purpose and for an specific case, which
is an interesting approach with a certain complexity degree.
One possible trade off between complexity and signal analysis experience, is to
employ first the projection matrix:

Py = Y (Y TY )−1Y T (10)



where Y is hankel and of size TxT , as it is commonly developed in filter estima-
tion theory [15]:

Ŷ = PyY (11)

where Ŷ is a matrix of size TxT formed with shifted samples vectors.
Afterwards, the singular value decomposition (SVD) of Y yields the system
modes; the amount of modes presenting a normalized value close to unity give
the model dimension [16]. The resulting dimension through these operations de-
pends on the size of the T -time window and the frequency content behaviour
(which is in part infered by experience) of the signal, as it is explained on the
results section.

3.2 Algorithm

The elements presented for analzing non stationary signals in this work are
sumarized as follows:

1. Estimate and select the model order based on the SVD of (11).
2. Compute the model coefficients from normal equations (5).
3. Extract the poles from (6) in the view of (7).
4. Calcule the PSD in (8) and the frequencies associated to every pole in (9).

4 Results

4.1 Bat signal

The pole tracking method by hereditary computation has been tested over a bat
sonar signal obtained from the Time-Frequency Toolbox [17] developed by the
CNRS (Centre National de la Recherche Scientifique) and the Rice University.
In addition, the toolbox provides a function tfrpwv that implements the pseudo-
Wigner-Ville distribution, which is a discrete-time windowed frequency version
of the Wigner-Ville distribution [3]. This function has been used on the bat signal
in order to analyze, compare and validate the pole tracking method presented
in this work for narrowband signals.
The employed bat sonar signal has been sampled at 230.4KHz and presents a
range of frequencies from approximately 38-50KHz, considering values above
20 percent with respect to its maximum within the normalized power spectral
density (PSD) plot on Fig. 1. This fact has been verified by using the matlab
Fast Fourier Transform fft function to observe the signal frequency content
without its progression in time.

The time-frequency analysis of the bat sonar signal, performed by using the
pseudo-Wigner-Ville distribution function tfrpwv, yields the plot of Fig. 2. It is
possible to observe in this figure that the bat sonar signal presents an hyperbolic
frequencial shift within time from 57.6KHz to about 39KHz.



Fig. 1. PSD of the bat sonar signal.

The pole tracking method developed for time-frequency analysis along this
document shows its performance on Fig. 3 with an hyperbolic frequency shift
from about 55KHz to 38KHz. The model dimension employed for this analysis,
as explained on subsection 3.1, was of n = 2 and it was obtained from the
mean number of singular respresentative values, as well as from the performance
comparison with the Wigner-Ville distribution method. It is possible to say,
based on this information, that the pole tracking method accomplishes a fine
preformance on depicting the time-frequency behavior of the bat sonar signal,
and even goes a little further on the lower limit of the bat signal frequency
content. This statement is supported when mirrowing the frequency content
observed on Fig. 1 and the time-frequency behavior showed on Fig. 2 with Fig.
3.

4.2 Newborn Cry signal

In the view of valildating the hereditary computation of the AR coefficients
with respect to the well known Linear Predictive Coefficients (LPC) method
for nonstationary signal analysis [18], a non perturbed signal containing two
sinusoids of 250Hz and 300Hz was simulated and the frequency estimated from
the beforehand mentioned pole tracking method by employing each technique.
The frequencies were obtained every 100ms from a one second signal sampled at a
rate of 1000Hz. As it is observed on Figure 4, there is not error on the estimated



Fig. 2. Time-Frequency plot from Wigner-Ville distribution.

frequencies from the hereditary technique, whereas there is about a general 2
percent error from the LPC method. The lcp command from the Matlab 7.6.0

software was used.
It has been mentioned that the strength and weakness of the LPC method are the
ability to obtain stable models for speech synhtesis and its vocal tract description
lack, respectively. On the other hand, the ARMA model is able to obtain a
better result based on certain estimation techniques, but some of the resulting
poles can lie outside the unit circle [18]. The ARMA model is employed this time
combined to the hereditary approach for completing the autocorrelation function
at every step [9] of a normal newborn cry signal, which is nonstationary because
a considerable part of the power spectra is in the low frequencies [19] (pitch of
400-600Hz).
The normal newborn cry recording was sampled at Fs = 8000Hz and treated
in segments of time horizon T = 20ms. It is important to mention that there is
no overlapping between segments nor windowing to carry out the analysis. The
order or dimension used for the linear estimator was of n = 10, considering the
experience on speech and newborn cry analysis [6], and observing the average of
the obtained dimensions as explained on subsection 3.1. This allows to track the
pitch and 4 formants due to the 5 pairs of conjugated poles found when none
real pole appears.

On Fig. 5 we can observe the frequency components evolution in time of a
normal newborn cry. When the pitch and 4 formants are present, a ’+’ is used;
when some of the five components dissapear, a ’x’ is drawn. It is possible to
notice the characteristic random presence of fading periods [6].



Fig. 3. Time-Frequency plot from Pole Tracking Method.

5 Conclusions and Future Work

In this work a new method for time-frequency analysis of narrowband and wide-
band nonstationary signals has been developed. It is based on the hereditary
renewal and computation of past T -samples, once the correlation and intercor-
relation products have been calculated, in the view of exctracting more accurate
model coefficients which better describe the time series behavior. It is impor-
tant to mention that this method allows an authomatic frequency information
extraction throught the model poles, without needing signal windowing nor over-
lapping to capture the transient signal behavior, as it is frequently required [3].
Due to the linear approximation by sections that this method implements, it
was possible to follow the nonlinear (hyperbolic) frequency shift behavior of a
bat sonar signal. Besides it, a good time-frequency description of a quite nonsta-
tionary newborn cry signal was carried out. It is thougth that implementation
of the hereditary computation combined to the Volterra series model, as it has
been carried out for non linear systems identification [20], for biomedical [21] and
speech [22] signals transient behavior analysis, will lead to usefull results due to
the possibility of modeling nonlinear behaviors (bursts for instance, see [19]) con-
tained on the linear estimation error by only using an ARMA or an LPC method.

References

1. Priestley, M.B.: Non-linear and non-stationary time series analysis. Academic Press,
London (1988)

2. Ezekiel, S., et al.: Seismic Signal Analysis using Correlation Dimension. Proc. in
Applied Informatics (2003)



Fig. 4. Spectrogram of two sinusoids.

3. Debnath, L.: Wavelet Transforms Time-Frequency Signal Analisis. Birkhuser (2001)

4. Lee, F.A., Nehorai, A.: Adaptive Power Spectrum Estimation Algorithm for Heart
Rate Variability Analysis. Proc. of the IEEE, 273–276 (1992)

5. Karjalainen, P.A.: Estimation Theoretical Background of Root Tracking Algorithms
with Applications to EEG. University of Kuopio Department of Applied Physics
Report Series ISSN 0788-4672 (1996)
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