
Lossless Compression of biological sequences
with evolutionary metadictionaries

Oscar Herrera1 and Angel Kuri2

1 Universidad Autónoma Metropolitana Azcapotzalco
Departamento de Sistemas
oha@correo.azc.uam.mx

2 Instituto Tecnológico Autónomo de México
Departamento de Computación

akuri@itam.mx

Abstract. This work presents a method for lossless data compression
based on the identification of patterns in sequences called metasymbols.
A metasymbol is a subsequence consisting of regular alphabet symbols
and the gap symbol ∗ that matches any alphabet symbol. A first task of
the method focuses on discovering metasymbols in single sequences and a
second task aims to identify a metadictionary that contains a minimal set
of common metasymbols in multiple sequences. Since these tasks repre-
sent NP-complete problems we propose, for the first of them, a heuristic
method to discover metasymbols which is guided by the minimization of
a compression function defined according to the Kolmogorov complexity
and the Minimum Description Length principle, and for the second we
appeal to a genetic algorithm that aims to identify the metadictionary.
As our compression method is based on evolutionary metadictionaries it
can be applied to highly entropic sequences and to others where classic
compressors do not have a good performance. Biological and multimedia
sequences have these properties so we propose a case study to identify
a metadictionary in Saccharomyces cerevisiae’s proteins sequences. In a
future work we expect to apply this method to multimedia data and to
deal with larger sequences.

Key words: Lossless Data compression, Information Theory, Genetic
Algorithm, Pattern Discovery, Biological Sequences.

1 Introduction

In the last decades several methods have been proposed for lossless data com-
pression (for instance: Huffman [9], Arithmetic [25], Lempel-Ziv (LZ) [26], and
Prediction by Partial Matching (PPM) [4]). These methods, which we will refer
to as classic, exhibit good performance on those files3 which include plain text,
computer generated graphics, and others that: i) involve a reduced number of
ASCII symbols, ii) their symbols follow a non-uniform distribution, iii) their

3 File, string, indexed symbol array or sequence will be used indistinctively

2 Oscar Herrera and Angel Kuri

symbols follow predefined gramatic rules, or iv) have local correlation between
adjacent symbols. Lossless data compression has been typically interpreted as
“text compression” and since classic methods have similar performance they are
often compared with two corpus: Calgary [2] and Canterbury [22] which are rep-
resentative of the kind of files whose features have been listed previously. But a
plethora of sequences, such as those that encode DNA (deoxyribonucleic acid),
RNA (ribonucleic acid) and proteins, cannot be successfully treated with classic
methods despite the fact that they can be expressed as letter sequences [16][17].

In the case of DNA the symbols are A, T, G, and C corresponding to the
four bases (nucleotides) adenine, cytosine, guanine, and thymine respectively; in
the case of RNA symbols are A, C, G and U for uracil. In the case of proteins
the aminoacids4 can be expresed as upper case letters A, C, D, E, F, G, H, I,
K, L, M, N, P, Q, R, S, T, V, W, and Y, where each letter encodes a triplet of
nucleotides (codons).

Multimedia sequences are another case where classic methods cannot be suc-
cessfully applied. Since a certain amount of information loss is tolerable, lossy
methods have been proposed. Such is the case of MP3 [8] and JPEG [18].

The Incompressibility Theorem (IT), which is revisited in Section 2, plays
an important role in the lossless data compression research area. The IT states
the non-existence of any method that compresses all sequences. An important
result that follows from the IT is that all lossless compression methods converge
to the same performance over a sufficiently large set of files (see [7]) and, given
that we typically do not compress a large set of files5, we should have a variety
of compressors that represent alternatives to face the challenge of compressing
different kinds of them. But classic methods were not designed under this ap-
proach and they focus on the same kind of files. In this work we explore a new
approach for lossless data compression where the main idea is that is possible to
identify metasymbols in multiple sequences and it allows us to encode them by
capturing the redundancy that is not exploited by classic methods [12][13].

In Section 3 we describe the heuristic that allows us to discover metasymbols
in single sequences.

In Section 4 we describe how to build a metadictionary from the metasymbols
discovered by the heuristic applied to single sequences. With the metadictionary
is possible to encode several sequences and achieve compression without loss of
data.

In Section 5 we present experiments and their results for a case study of
compressing Saccharomyces cerevisiae’s protein sequences [23] using the heuris-
tic and applying a highly efficient non-traditional genetic algorithm to build a
metadictionary.

In Section 6 we present conclusions and comment on future work.

4 The twenty standard or primary aminoacids.
5 Given a file that stores a sequence of n symbols, a large subset means ∼ 2n different

files.

Lossless Compression of biological sequences with evolutionary metadictionaries 3

2 Incompressibility and Compression

An information source generates infinite sequences si1si2si3... with symbols si

taken from a finite alphabet Σ = {s1, s2, ...sN} with an associated probability
distribution PN

i=1 = {pi}, in the case of finite sequences each symbol probability
is estimated from its relative frequency.

Let An be any sequence of n bits, n ≥ 1, and let Fn be the set of all 2n

different An sequences. Given an original sequence An it is mapped to other Ai

that uses i bits. If i < n we say An is compressed to Ai, if i = n then we say
that there is no compression and if i > n we say An was expanded to Ai. The
compression rate r (smaller is better) is defined as:

r =
i

n
. (1)

A lossless method achieves compression with a mapping funtion f that must
be injective in order to warrant the decompression through the inverse function
f−1.

Incompressibility Theorem: For all n, there exists an incompressible
string of length n. Proof: There are 2n strings of length n and less than 2n

descriptions that are shorter than n.
For F1 = {0, 1} it is obvious that each file is incompressible because both of them
(0 and 1) have the minimum one bit length and f can interchange 0 → 1 and
1 → 0 or keep them unchanged. Now consider the restriction of not to expand
any file. The elements of F2 = {00, 01, 10, 11} cannot be compressed because the
only way to do this is mapping F2 to F1 but they were already used; as the same
occurs for n ≥ 2 we have shown that there is no method that promises to com-
press at least once and never to expand. The only way to achieve compression is
to allow some sequences to be expanded, so elements in Fn can be assigned to
elements of Fj for j = 1, 2, .., n−1. Now let us expand the families F1, F2, ...Fn−1

in order to compress the sequences of Fn, the average compression rate for 2n−2
compresed sequences of Fn is

r =
∑n−1

i=1 2i i
n

2n − 2
(2)

which can be simplified to

r =
2n(n− 2) + 2

(2n − 2)n
(3)

for n � 2, r → 1 meaning that if we compress 2n − 2 different files of Fn

the average compression will always tend to one in spite of the f we use. Note
that in this approach some files of Fn will be mapped to F1 and achieve the
lowest compression rate but other files will be mapped to families which provide
undesirable high compression rates.

The success of a compression method relies in the mapping of one sequence to
another with minimum length. But what is the best method? Does this method

4 Oscar Herrera and Angel Kuri

exist? What about random sequences? If a given method fails then we should
try another (different enough) method aiming to fit the data model but this is
tipically unknown.

Because all compressor functions have the same average compresion rate
over a large set of files (∼ 2n) and typically we do not compress all of them, the
mapping function must be chosen to fit the data model in order to achieve low
compression rates, for example n = 1024 bits produce 21024 = 16256 different
files (more than a googol) so we will not compress all but rather a subset of
them.

Classic methods focus on the same subset of files where high correlation
between adjacent symbols and non-uniform distributions are assumed (see [7]),
they intend to be as fast as is possible, to read the data few times, and to keep
the simmetry which implies the use of comparable times in compression and
decompression.

However, this situation does not address our current needs. Internet traf-
fic and storage systems involve other kind of files such as audio, image, video,
biological sequences, climatic, and astronomic data that cannot be successfully
treated with classic methods. Internet servers have more processing capabilities
than clients and files compression can be achieved offline. Once a file is com-
pressed it is published on the Web or distributed many times in CD/DVD’s. In
these environments non-symmetric systems may be better appreciated than clas-
sic methods. Such is the case of image fractal compression [1] used in Microsoft’s
Encarta encyclopedia [27].

We propose two models for lossless data compression based on the identifica-
tion of repeated patterns called metasymbols. A first approach uses a heuristic to
discover metasymbols and consequently to encode single sequences considering:
i) the metasymbols description and ii) the sequence description based on these
metasymbols. With these two elements it is possible to express the sequence in
the most compact way [11, 6].

A second approach goes beyond and requires to identify a minimum set of
common metasymbols from all those proposed by the heuristic applied to single
sequences. The set of common metasymbols is called metadictionary and allows
to describe (compress) several sequences by capturing global redundancy. With
this goal in mind we perform multiple passes over the data in order to extract
and learn as much as is possible from it, and to build an ad-hoc model.

At this point we may think that this model has no a general application.
However, consider the case where many users share files, have copies of the same
software packages, use predefined formats to encode multimedia (header files)
or the case of biological sequences which have common ancestors which exhibit
conserved regions (motifs)[24]. Therefore we may use a very large but finite set
of files. The premise is that is possible to identify their global metasymbols. If
the metadictionary is representative of these kind of sequences we may expect
to compress sequences that were not explored previously (generalization).

Lossless Compression of biological sequences with evolutionary metadictionaries 5

3 Lossless Compression of single sequences

Pattern based lossless data compression for a single sequence aims to mini-
mize the number of bits required to describe the discovered metasymbols ∆ =
{M1, M2, . . . , MJ} plus the number of bits of the encoded sequence using
these metasymbols. This approach is consistent with the MDL principle [21].
The MDL principle is based on the simple idea that the best way to capture
regular features in data is to construct a model in a certain class which permits
the shortest description of the data and the model itself.

In order to achieve maximum compression the best metasymbols must be
identified. Here “best” means those metasymbols that allow to reexpress a se-
quence in the most compact way. This takes us to a cyclic dependence: to dis-
cover the best metasymbols the sequence must be compressed and to compress
the sequence we must know the best metasymbols. In this respect we propose
a heuristic method that explores several metasymbols and selects only one of
them. The rest of the sequence is updated and the algorithm proceeds to search
the next metasymbols. The algorithm stops when there are not enough repeated
metasymbols or the metasymbols do not provide a reduction in the number of
bits of the encoded sequence. As the i-th selected metasymbols covers (where by
”cover” we mean the inclusion of all the original symbols) the sequence partially,
in order to reduce the size of the search space, the metasymbols are required to
be exclusive, that is, they consist of those patterns which do not share symbols.
These considerations are crucial for future selections of metasymbols.

Metasymbols have the next properties:

1. Length |Mi|.
2. Frequency |fi|.
3. Gaps {gi}.
4. Offsets {oi}.

These properties define the structure of the metasymbols and, of course,
require the use of a certain number of bits to be encoded. Our goal is to minimize
the number of bits required plus the number of bits of the encoded sequence using
these metasymbols.

Unlike other parametric methods for gapped pattern (metasymbols) discov-
ery such as [19] and [20] that apply a penalty criterion for maximum gaps,
predefine a minimum frequency for patterns or fix their maximum length, our
algorithm performs an unsupervised search of metasymbols in a sequence guided
only by goal of estimating its algorithmic complexity[10] by minimizing a com-
pression function C [11, 6] that counts the necessary bits to fully encode the
compressed sequence, as follows.

Let |ai| be the number of bits of each symbol ai in Σ.
The maximum gap length for a sequence Si with length |Si| is given by

gi = log2 d|Si|e (in bits). As the metasymbol has |Mi| − 1 gaps then the number
of bits used for all gaps is (|Mi| − 1)gi.

6 Oscar Herrera and Angel Kuri

The maximum offset for a metasymbol requires oi = log2 d|Si|e bits. Since
the metasymbol requires fi offsets, the number of bits used for offsets is given
by fioi.

The number of bits to describe the contents is |Mi||ai|.
Symbols that are not covered by the i − th metasymbol are joined in the

sequence Si+1 requiring (|Si| − fi|Mi|)|ai| bits.
The number of bits for Si expressed with the i-th metasymbol is given by

the compression function

C(Si) = (|Mi| − 1)gi + |Mi||ai|+ fioi + (|Si| − fi|Mi|)|ai|. (4)

The description of the i-th metasymbol uses

|Mi − 1|gi + |Mi||si|+ fioi (5)

bits and (|Si| − fi|Mi|)|ai| means the number of bits for the residual sequence
Si+1.

The number of bits of the contents of the i-th metasymbol in the original
sequence is |Mi|fi|ai|. We define the discriminant di as

di =
(|Mi| − 1)gi + |Mi||si|+ fioi

|Mi|fi|si|
. (6)

A minimum di is desired to select the best metasymbol from all the possible
metasymbols in the search space. The condition expressed in (6) means that we
achieve compression if

di < 1. (7)

After a metasymbol was selected, the residual sequence Si+1 is compressed
again, and the algorithm stops when there are no more metasymbols or (7)
is not satisfied. Then the residual symbols are lumped in the so-called filler
metasymbol.

Now we can view the sequence compression for S0 (original sequence at level
0) as a transformation process where the length of the compressed sequence at
the i-th level (i = 1, . . . , J) is given by:

C(Si) =
{

|Si|, if di ≥ 1
I + C(Si+1|Mi), if 0 < d < 1 (8)

Algorithm 1 shows how to search metasymbols to compress a sequence.6

Note that, by definition, metasymbols in a sequence correspond to those groups
of symbols which repeat themselves frequently and are as large as is possible.
Therefore, they are representative of the redundancy and structure of the se-
quence.

6 More detailed information of this algorithm can be reviewed at [6] and [7].

Lossless Compression of biological sequences with evolutionary metadictionaries 7

Algorithm 1 Pattern discovery by sequence compression
T (Si) : INPUT(SEQUENCE Si) OUTPUT(PATTERN Mi)
FreeSymbols← |Si|, di = 0
Mark all symbols in Si as free symbols
LEN = 1
{a1, a2, ..., ak} is the set of different symbols in S
for j = 1 to k do
fjLEN ← Highest frequency of all the symbols located at gLEN positions of σj0 =
aj

while fjLEN > 1 do
Identify the symbol σjLEN with highest frequency fjLEN nearest to σj0, located
at gLEN positions. Mark all the instances of σjLEN as non-free symbols.
LEN = LEN+1
Evaluate di

Store the metasymbol{σj0 σj1σj2...σLEN} with minimal di

end while
end for
Select the metasymbol{σ0 σ1 σ2...σLEN} with minimal di

if di < 1.0 then
Mark symbols of S as non free symbols for each symbol of the metasymbol in-
stances.
FreeSymbols ← Free symbols in S

else
Mfiller ← all free symbols in S

end if

4 Data compression of multiple sequences

Definitions.

Covering. Is the number of symbols that the selected metasymbols comprises.
Its maximum value is L =

∑N
i=1 li.

Noncovered. Is the number of symbols that are not covered by the selected
metasymbols. The value is given by (L− covering).

Overlapping. Is the number of times that a symbol is covered more than once
by the selected metasymbols.

UsedMetasymbols. Is the number of metasymbols used to encode a sequence.
AllMetasymbols. Is the number of metasymbols obtained from compressing

single sequences.

Given N sequences with length li symbols each, the problem of discovering com-
mon metasymbols consists in identifying those with minimal redundance and
maximum covering. The minimal redundance criterion implies that we get mini-
mal overlapping. An overlap is generated when more than a metasymbol uses the
same symbol. Notice that metasymbols were selected by compressing individual
sequences and there is no overlap for single sequences (intrasequence metasym-
bols) but when we search for repeated metasymbols in other sequences there

8 Oscar Herrera and Angel Kuri

may be overlapped symbols (intersequence metasymbols). In order to achieve
maximum covering we must guarantee that the number of non-covered symbols
(filler) must be minimized. If we have M metasymbols obtained by compressing
individual sequences there are 2M possibilities to choose the metadictionary. To
tackle this decision problem we appeal to a non-traditional Vasconcelos GA or
VGA [14] where each individual is a string decision of M bits and where the
fitness function for the individuals is evaluated maximizing (9)

Fitness = Covering− |Noncovered+Overlapping| − UsedMetasymbols

AllMetasymbols
(9)

Basically what the fitness measure of (9) does is to apply a penalization when
a symbol is not covered as well as when a symbol is covered more than once,
and to tending to achieve the identification of the minimal metadictionary. The
optimal value is given for a full covering, when common metasymbols do not
overlap and when the number of common metasymbols is minimal. That means
−∞ < Fitnessopt < L.

Once a set of m common metasymbols are proposed by the VGA to conform
the metadictionary we proceed to index each metasymbol with dlog2me bits,
so that, if a single sequence required J metasymbols and the jth metasymbol
is repeated fj times at positions pointed by the offsets which requires dlog2lie,
then the length of the compressed sequence is given by li(S|m) where

li(S|m) = Jdlog2me+
∑

J

(fjdlog2lie) + bitsfiller (10)

Here, bitsfiller counts the number of bits of the non-covered symbols in the
sequence. Note that, under this approach, the length of the metadictionary is
not considered because it is assumed that the decompressor program has a copy
of the metadictionary.

5 Experiments

According to our lossless compression method a first experiment consists in the
next steps:

1. Select N sequences from the Saccharomyces cerevisiae database [23].
2. Compress each sequence using the heuristic described in Algorithm 1.
3. Store all the metasymbols from individual sequences.
4. Identify possible repeated metasymbols (each one must be included only

once).
5. Apply a VGA to identify the metadictionary. Each metasymbol of the meta-

dictionary is encoded with log2m bits, where m is the number of common
metasymbols or metadictionary length.

6. Optimize the number of metasymbols (J) required to encode individual se-
quences (i = 1, 2, . . . , N). For this purpose the VGA is executed for each
sequence.

Lossless Compression of biological sequences with evolutionary metadictionaries 9

MSISFPKMQHLIVMTTIGDKKVNNNIILFL

G******N

K*****************N

I***********N

MT

Fig. 1. Four metasymbols G6N :(17), K17N :(6), I11N :(11), and M0T :(13) taken from
the evolutionary metadictionary for YAL037C-A

7. Evaluate the length of each encoded sequence using the J metasymbols from
the metadictionary.

In the experiments we considered N = 88 protein sequences stored in text
files where every aminoacid requires one byte. The average length of the analyzed
sequences is 494 with a standard deviation of 353.

The number of different metasymbols obtained by compressing individual
sequences is 3319 (209 are repeated from 3528). Those metasymbols model the
internal redundancy of single sequences (intrasequence redundancy).

After applying the VGA with 300 generations, a population of P = 40 indi-
viduals with crossover probability Pc = 0.9 and mutation probability Pm = 0.01,
the evolutionary metadictionary yields m = 242 metasymbols that embody the
intersequence redundancy.

Each metasymbol of the metadictionary can be referenced with entries of
dlog2242e = 8 bits. Then we proceed to identify the optimal subset of the meta-
dictionary required to encode individual sequences. For this purpose we use the
same fitness function of (9) but using the metadictionary as source of metasym-
bols.

The average number of required metasymbols to encode N = 88 sequences
is 106, with a standard deviation of 40. As a simple example consider the short-
est sequence of “YAL037C-A” that describes the sequence of aminoacids MS-
ISFPKMQHLIVMTTIGDKKVNNNIILFL. It uses four metasymbols G7N :(17),
K18N :(6), I12N :(11), and M1T :(13) of the metadictionary, where the subindices
denote the gaps and the content of the parenthesis denotes the offsets. From
Fig. 1 we see that the two first metasymbols overlap its second aminoacid “N”
In this case, we need 4 ∗ 8 = 32 bits to cover 7 aminoacids from a total of 30.
This represents a cover of 23%.

Our experimental results show that for N = 88 sequences the average for the
cover is 65% with a standard deviation of 8%. This is achieved with an average
of 106 metasymbols with a standard deviation of 40. Additionally, notice that
the heuristic applied to this sequence identifies the metasymbol T4K3N1I but
as it is not common to other sequences the genetic algorithm does not accept it
as a member of the metadictionary. (see Fig 2)

For N = 88 sequences we require an average of J = 106 metasymbols.
The repetitions average is fj = 281 and the average length of the filler is
bitsfiller = 1259 bits. Consequently we require 298 bytes. This represents an

10 Oscar Herrera and Angel Kuri

MSISFPKMQHLIVMTTIGDKKVNNNIILFL

T****K***N*I

T****K***N*I

Fig. 2. The metasymbol T4K3N1I for the sequence YAL037C-A

Table 1. Evolutionary metadictionary applied to non-preprocessed sequences

Name Length (bytes) Elapsed time (seconds) Metasymbols (Max 242) %Cover

YAL035W 1002 69.26 143 64

YAL051W 1062 74.46 148 65

YAL019W 1131 82.94 146 67

YAL001C 1160 77.53 141 66

YAL002W 1176 87.75 158 69

YAL063C 1322 86.65 139 61

YAL026C 1355 98.69 155 68

YAL017W 1356 104.90 153 65

YAL024C 1435 109.94 152 63

YAL029C 1471 106.59 155 64

average compression ratio of 298
494 = 0.6. A second experiment uses the metadic-

tionary to explore whether these metasymbols are repeated in other sequences
that were no previously analyzed. The results are reported in Table 1. The first
column describes the name of the sequence, the second column its length, the
third the VGA execution time, the fourth column lists the execution time of the
genetic algorithm, and the last column describes the cover.

6 Conclusions

The Incompressibility Theorem plays an important role in the lossless compres-
sion research area. It proves the non existence of a general optimal compressor
and suggests that a set of different compressor methods should be used to tackle
the challenge of compressing different kind of files. As an alternative to the clas-
sic compression methods (which were designed to compress low entropic files
with local correlation) we study another compression method which focuses on
high entropic sequences; such as biological and other types characteristic of the
multimedia age.

A first approach to compress single sequences intends to discover the se-
quence’s metasymbols using a heuristic that minimizes a compression function
C defined according to Kolmogorov’s complexity and the MDL principle.

Given a set of sequences, there exists the possibility that their metasymbols
are repeated in other sequences. Hence, we state that is possible to optimize a

Lossless Compression of biological sequences with evolutionary metadictionaries 11

metadictionary that aims to reach: a) The maximum cover, b) The minimum
overlapping between metasymbols and c) To reduce the number of required
metasymbols which allows multiple sequences encoding.

Our experiments show that for a set of protein’s sequences it is possible to
apply a genetic algorithm to build an evolutionary metadictionary from which
we can express these sequences without loss of data. They show that the meta-
dictionary is representative enough and allows to encode another non-explored
sequences.

As this method is not based on the entropy of the sequences it can be applied
complementarily with classic methods. Future work, therefore, will be aimed at
determining an evolutionary metadictionary on multimedia files such as MP3 and
JPG and to provide a faster alternative method to lossless data compression.

The use of evolutionary metadictionaries has immediate applications on fields
such as pattern recognition, biological sequence alignment and sequence classi-
fication among others. They will be explored in a future work.

One very interesting issue has to do with the fact that, as of today, there
is no recognized method yielding properly compressed re-expression of protein
sequences. So much so, that in [17], a hard conclusion is that no such scheme
exists. But the foregoing work shows conclusively that it is not the case. For the
mere fact of being able to re-express a protein as a set of covering metasymbols,
guarantees the possibility of a more economic re-expression of the sequence in
accordance to the MDL principle. More importantly, it uncovers the immediate
possibility of analyzing genetic trends both operational and phylogenetic. This
last issue should not be underestimated. Such possibility has been the explicit
aim of various researchers [5][3] and remains to be fully studied. In fact, it is
a corollary of the preceding discussion that metasymbolic analysis as described
above is tantamount to numerically approaching Kolmogorov’s complexity [15].

References

1. Barnsley, M., “Fractals Everywhere”, Morgan Kaufmann Pub; 2nd. Sub edition,
June 1993.

2. http://links.uwaterloo.ca/calgary.corpus.html–July 14, 2008. Compression Algo-
rithms”, Proceedings of the Conference on Data Compression, IEEE Computer
Society, 1997.

3. Cavalli-Sforza, L. and Edwards, A., “Phylogenetic analysis: models and es-
timation procedures”, Evolution 32: 550-570 (also Amer. J. Human Genetics 19:
233-257), 1967.

4. Cleary, J. and Witten, I., “Data compression using adaptive coding and partial
string matching”, IEEE Transactions on Communications, Vol. 32, No. 4, 396-402,
April 1984.

5. Edwards, A. and Cavalli-Sforza, L., “Reconstruction of evolutionary trees”,
Phenetic and Phylogenetic Classification, ed. V. H. Heywood and J. McNeill, Sys-
tematics Association Volume No. 6. 67-76, London. 1964.

6. Herrera, O., “Lossless data compression using metasymbols”, Doctoral thesis,
Center for Computing Research, IPN, Mexico, 2005.

12 Oscar Herrera and Angel Kuri

7. Herrera, A. and Zaragoza, F., “Incompressibility and lossless data compression:
An approach by pattern discovery”, Computación y Sistemas, Vol. 13, No. 1, 45-60,
ISSN 1405-5546, IPN, Mexico, 2009.

8. Hacker, S., “MP3: The definitive guide, 1st ed., Sebastopol Calif., O’Reilly, 2000.
9. Huffman, D., “A method for the construction of minimum-redundancy codes”,

Proc. Inst. Radio Eng. 40, 9 (.), 1098-1101, Sept 1952.
10. Hutter, M.,Merkle, W. and Vitányi, P., “Kolmogorov Complexity and Ap-

plications”, Internationales Begegnungs-und Forschungszentrum fuer Informatik
(IBFI), Schloss Dagstuhl, Dagstuhl Seminar Proceedings, Vol. 06051, Germany,
2006.

11. Kuri, A. and Herrera, O., “MSIM: A Pattern Based Lossless Data Compressor”,
Advances in Artificial Intelligence Applications, Research on Computing Science,
ISSN 1665-9899, Vol. 17, 183-192, noviembre 2005, Monterrey, México.

12. Kuri, A., Ortiz M., “A New Approach to Sequence Representation of Proteins
in Bioinformatics”, Lecture Notes in Artificial Intelligence: No. 3789, Springer-
Verlag, 880-889, Editors: Gelbukh, A., Albornoz, A., Terashima-Maŕın, H., ISBN
3-540-29896-7, ISSN 0302-9743, 2005.

13. Kuri, A., Ortiz M., “A New Approach for Representation in Biological Se-
quences”, WSEAS Transactions in Biology and Biomedicine, WSEAS Press, Issue
1, Vol 3, 31-36, ISSN 1109-9518, 2006.

14. Kuri, A., “A Comprehensive Approach to Genetic Algorithms in Optimization
and Learning, Vol. 1: Foundations”, Instituto Politécnico Nacional, 1-270, ISBN
970-18-2220-X, 1999.

15. Kuri, A., Galaviz, J. and Herrera, O., “Practical estimation of Kolmogorov
Complexity using highly efficient compression algorithms”, Advances in Artificial
Intelligence: Applications, Gelbukh, A., Monroy, R., ISBN 165-9899, 193-201, Mex-
ico, 2005.

16. Nelson, M. and Gailly, J. L., “The Data Compression Book”, 2nd Edition, MT
Books Redwood City, CA, 1995.

17. Nevill-Manning, C. G. and Witten, I., “Protein is incompressible”, Data Com-
pression Conference (DCC ’99), 257, 1999.

18. Pennebaker, W.B. and Mitchell, J.L., “JPEG: Still Image Data Compression
Standard”, ITP Inc., 1993.

19. Rigoutsos, I. and A. Floratos, “Combinatorial Pattern Discovery in Biological
Sequences: the TEIRESIAS Algorithm”, Bioinformatics, 14(1), January 1998.

20. Rigoutsos, I. and A. Floratos, “Motif Discovery Without Alignment Or Enu-
meration”, Proceedings 2nd Annual ACM International Conference on Computa-
tional Molecular Biology (RECOMB ’98), New York, NY. March 1998.

21. Rissanen, J., “Modelling by shortest data description”, Automatica, 14, 465-471,
1978.

22. Ross, A. and Tim, B., “A Corpus for the Evaluation of Lossless Compression”,
Data Compression Conference (DCC’97), 1997.

23. http://www.yeastgenome.org/ –July 14, 2009.
24. Waterman, M., “General methods of sequence comparison”, Bulletin of Mathe-

matical Biology Vol. 46, No. 4, 473-500, 1984.
25. Witten, I., Neal, R. and Cleary J., “Arithmetic coding for data compression”,

Communications of the ACM 30(6): 520-540, 1987.
26. Ziv, J., and Lempel, A., “A Universal Algorithm for Sequential Data Compres-

sion”, IEEE Trans. on Inf. Theory IT-23, v3, 337-343, 1977.
27. http://encarta.msn.com/encyclopedia 761568021/fractal.html–July 14, 2009.

