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Abstract. In this contribution, a system that allows a prediction of urban
airborne pollution has been modeled. A case study is carried out for the city
of Liverpool in north-west England for one of the most dangerous particles to
human health such as PM10.

Previous research include models that mostly use neural networks to tackle
the prediction issues.

However a model based on a combination of neural networks and fuzzy logic
is proposed for this work. This approach shows a closer estimation for the non-
linear behavior of the airborne pollution model in comparison with previous
works using neural networks. Also, the model proposed shows lower error and
lower computational cost, making it convenient to use.

The specific neuro-fuzzy model is generated, outlining the features and mem-
bership functions of each model and by designing a better model in terms of
error and computational cost the model is validated.

Keywords: Fuzzy Clustering, ANFIS, Airbone Pollution, Particulate matter,
Pollution Prognosis.

1 Introduction

In recent times, urban air pollution has been a growing problem especially for
urban communities. There are different kinds of air pollutants. For instance,
some compounds like sulphur dioxide, nitrogen, carbon monoxide, and partic-
ulate matter (PM) are considered as typical indicators of air quality. This
situation appears to be more relevant in urban areas where particular atmo-
spheric and geographic conditions may cause an accumulation of the pollutants
in the atmosphere [1].

The size of particles in the atmosphere varies over four orders of magnitude,
from a few nanometers to tens of micrometers. Size, shape and chemical prop-
erties govern the lifetime of particles in the atmosphere and the site of deposition
within the respiratory tract. Health effects of ultrafine particles (UFP, diam-
eter <100 nm) are likely very different from those caused by coarse particles
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(< 2.5µm) whilst PM10 includes all particles with diameters less or equal to
10µm. In this contribution, PM10 airborne particles are considered due to their
effect on human health. For example: this is the fraction of particles that is
most likely to be deposited in the lung [2], being the children and the elderly
more vulnerable to both PM10 and PM2.5[3]

According to studies presented on the composition of PM10, Particulate matter
from combustion generally comprises carbon, low volatile organic compounds,
sulphates, metals and some other inorganic material, in various amounts from
different combustion sources and fuels. Thus, making it difficult to model the
behavior.[4],[5].

There are many monitoring methods available to measure PM10 concentra-
tions. In past contributions, It has been shown that a mobile Self-Contained
Unit (SCU) made possible an accurate, cost-effective and robust method to mea-
sure PM10 concentration [6],[7],[8],[9],[10] using a technique called chromatic
modulation and cross-correlating the results with a TEOM (Tapered Element
Oscillating Microbalance) apparatus via a calibration curve [6].

In this contribution, the validated immediate PM10 particle concentration from
the SCU, humidity and mean temperature for specific dates are used in a com-
puting system developed to predict the following PM10 concentration

2 ANFIS Architecture

In a conventional Fuzzy Inference Fystem (FIS), the number of rules is decided
by an expert who is familiar with the system to be modelled. In this particular
case study the number of membership functions assigned to each input is chosen
empirically. This is carried out by examining the desired input-output data
and/or by trial and error. In this section ANFIS topology and the learning
method used for this neuro-fuzzy network are presented. Both neural network
and fuzzy logic algorithms are model-free estimators and share the common
ability to deal with the uncertainties and noise. It is possible to convert fuzzy
logic architecture to a neural network and vice versa [10]. Consequently, this
makes feasible to combine the advantages of neural network and fuzzy logic
together [11][12], as shown on Figure 1.
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Figure 1: ANFIS structure

Layer 1: Every node in i in this layer is a square node with a node function

O1
i = µAi(x) (1)

Where x is the input node i, and Ai is the linguistic label(small, large, etc.)
associated with this node function. In other words O1

i , is the membership func-
tion of Ai and it specifies the degree in which the given x satisfies the quantifier
Ai.

Usually, µAi(x) is chosen to be Gaussian function with maximum equal to 1
and minimum equal to 0, such as:

µAi(x) =
1

1 +
[(

x−c1
ai

)2
]bi

(2)

where ai, bi, ci are the set parameter. As the values of these parameters change,
the best Gaussian functions are chosen, thus showing various forms of mem-
bership functions on linguistic label Ai. In fact, any continuous and piecewise
differentiable functions, such as commonly used trapezoidal or triangular-shaped
membership functions may be used for node functions in this layer. Parameters
in this layer are referred to as premise parameters.

Layer 2: Every node in this layer is a circle node labelled π which multi-
plies the incoming signals and outputs the product. This is shown on equation
3

wi = µAi(x) ∗ µAi(y), i = 1, 2 (3)

Each node output represents the firing strength of a rule (In fact, other T-norm
operators that perform generalized AND can be used as the node function in
this layer).
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Layer 3: Every node in this layer is a circle node labelled N. The ith node
calculates the ratio of the ith rules firing strength to the sum of all rules firing
strengths:

wi =
wi

w1 + w − 2
, i = 1, 2 (4)

For convenience, outputs of this layer are called normalized firing strengths.

Layer 4: Every node in this layer is a square node with a node function

O4
i = wif = w (pix+ qiy + ri) (5)

Where wi is the output of layer 3, and pi, qi, ri are the set parameter. Parame-
ters in this layer will be referred to as consequent parameters.

Layer 5: The single node in this layer is a circle node labelled Σ that cal-
culates the overall output as the summation of all incoming signals, ie.

O5
1 = overalloutput

∑
i

wif =
∑

i
wif∑
i
wi

(6)

An adaptive network, which is functionally equivalent to a fuzzy inference sys-
tem, has been constructed[11],[12]. The hybrid algorithm is applied to this
architecture. This means that, as the process moves along in hybrid learning
algorithm, functional signals are calculated in the fourth layer and output pa-
rameters are identified using the least-square estimation. In the backward pass,
the error rates propagate backward and the premise parameters are updated by
the gradient descent [11].

3 Related Work

Neural Networks and fuzzy systems have recently become an alternative method
to conventional deterministic and stochastic methods[13][14].Several studies demon-
strate that neural based models could be used for developing air pollution dis-
tribution models (e.g.[11][15])Viotti et al 2002 uses a MLP to forecast short and
middle long-term concentrations levels for O3, NOx, NO2,Also Hooyberghs
[15]describes the development of MLP neural network to forecast the daily av-
erage PM10 concentrations in Belgian urban areas one day ahead. Zhang and
San ([16]) uses a wavelet neural network to model hourly NOx and NO2 con-
centrations of emission source. However, the authors acknowledge no related
work using a hybrid neuro-fuzzy system to predict PM10 harmful particles.

4 Data analysis and pre-processing

System Description:

The parameters to be taken into account are: Humidity and Temperature, these
datasets are provided by the UK National Air Quality Archive. A total of 13
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sites were used with similar characteristics: they used a TEOM monitoring
method (microanalyzer that uses a microbalance to weigh the amount of parti-
cle concentration) and the geographical location (northwest England). The list
of sites is shown on Table 1 and the Figure 2.

Blackpool Bolton Bradford
Bury Leeds Liverpool

Manchester Preston Salford
Sheffield Stockport Wigan
Wirral

Table 1: List of sites where TEOMs are located.

Figure 2: TEOMs location map

This paper consists of modelling the behaviour of particle concentration in
northwest England (Liverpool city) different years, The location of this site is
shown in Figure 3:

Figure 3: Location of Liverpool in United Kingdmon map

The relationship between PM10 Concentration and the Humidity and aver-
age temperature has a non-direct relationship as shown on Figures 4 and 5.
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Figure 4: Mean temperature vs. PM10 Concentration ithe city of Liverpool in
the years between 2005 to 2007

Figure 5: Humidity vs. PM10 Concentration ithe city of Liverpool in the years
between 2005 to 2007

This city has a diverse behaviour in terms of particle concentration, humidity
and temperature. Figure 6 shows the average PM10 concentration for all years
by day, Figure 7 shows the mean Temperature, and Figure 8 shows the Humidity.
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Figure 6: Average Humidity in Liverpool and Manchester in the year: 2006

Figure 7: Average Temperature in Liverpool and Manchester in the year: 2006

Figure 8: Average PM10 Concentration, Sites: Liverpool and Manchester,
Years:2005-2007.
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5 Discussion of Results

Airborne particulate monitoring in the city of Liverpool in the Northwest Eng-
land for different years has been carried out using a Fuzzy Inference System
structure (FIS)by getting the most important membership functions and rules
of two different algortitms the Fuzzy C-means Clustering algorithm (FCM) is
a method that is frequently used in pattern recognition. It has the advantage
of giving good modeling results in many cases, although, it is not capable of
specifying the number of clusters by itself, and the Substractive Clustering wich
method assumes each data point is a potential cluster center and calculates a
measure of the likelihood that each data point would define the cluster center,
based on the density of surrounding data points.

This model was designed with the data set of the city of Liverpool during the
year 2006 and and tested for each case of study. A general FIS model has
been generated for every case with a lower computational cost; this is because
the specific models vary between 12 and 18 membership functions and rules,
as shown in Table 2. The general model has only 4 membership functions and
rules, as shown on Table 3. The system shows reliable results for one hour ahead
of PM10 concentration prevision, with a low least-mean square error doing the
proposed forecaster a powerful tool for health warning systems.

Site V ariables MembershipFunctions Rules
Liverpool 2005 5 18 18
Liverpool 2006 5 12 12
Liverpool 2007 5 14 14

Table 2: Characteristics of each specific model.

V ariables MembershipFunctions Rules
5 4 4

Table 3: Characteristics of FIS proposed model in Liverpool abetween the years
2005 to 2007.

The Efficiency of this FIS model was optimized impacting on a closer results
between the PM10 raw and this model of each site and year, making a com-
parasion between the each raw data and the system FIS model, This is shown
in the Figures 9, 10 and 11.
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Figure 9: Least Mean Square Error between PM10 Raw Data vs.FIS model city:
Liverpool year: 2005

Figure 10: Least Mean Square Error between PM10 Raw Data vs.FIS model
city: Liverpool year: 2006

Figure 11: Least Mean Square Error between PM10 Raw Data vs.FIS model
city: Liverpool year: 2007
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This model was also tested tested using Manchester city in the year 2006
proving its performance as shown in Table 6, and the Figure 12

Figure 12: Least Mean Square Error between PM10 Raw Data vs.FIS model
city: Manchester year: 2006

6 Conclusion and Future Work

In this paper an optimized Fuzzy Inference System has been developed. An
unique model for every year and site were developed to reduce the computa-
tional cost and lower the number of membership functions in comparison with
the original FIS model of each case of study, thus enhancing the capability of the
Fuzzy Inference System(FIS). However, a generalized model could be obtained
and tested over other datasets proving the correctness of results.
The model proved robustnes in predicting harmful airborne particles with mod-
erate accuracy.
Several hybrid FIS models could be optimized to provide real-time prognosis
for PM10. This optimized model may be embedded on a device (e.g. FPGA)
to provide real-time prediction of airborne particulates. Also, more tests may
be carried out using other particles (e.g. SOx, NOx) to determine whether this
model can be applied to other harmful particles.
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