Genetic Algorithm Implementation on GPUs to solve Hanoi Towers Game

José Alberto Hernández Aguilar¹, Santiago Yip Ortuño¹, Nodari Vakhnia¹, Julio César Ponce Gallegos², Alberto Ochoa Ortiz³
¹jose_hernandez@uaem.mx, Accountant, Management and Informatics Faculty - Autonomous University of Morelos State, Av. Universidad No. 1001, Col. Chamilpa, Cuernavaca, Morelos, México, 62209.
²Autonomous University of Aguascalientes

³Autonomous University of Juarez City

Abstract. We discuss work in progress to parallelize a sequential Genetic Algorithm (GA) to solve Hanoi towers game, by using CUDA programming language to be executed on Graphics Processing Units (GPUs). For this purpose, we analyze the GPUs architecture, the rules of the Hanoi towers Game, and discuss how the GA works as well as the methodology we employ to parallelize it using CUDA. Preliminary results show is possible to parallelize sequential code, and a substantial reduction of time to solve Hanoi Game using CUDA and GPUs.

Keywords: Genetic Algorithms, Hanoi Towers, GPUs, CUDA.
1 Introduction
Today there are numerous programming techniques that enable us to obtain better solutions for various types of problems which require intensive processing times as are: Genetic algorithms, the swarm of particles, the Ants Colony, among others [4]. All of them require long execution times in their implementation which causes these processes may be long and tedious.
Given their optimization capabilities, the heuristics listed above are very useful for the improvement of math functions, all of these methods must be adapted to the function you want to optimize for its application in any type of problem.
Since the creation of computers it has been sought to optimize human activities because with this tool is possible to manage multiple tasks in a more efficient way, for that reason there is still much research to make computers work with robust processes more quickly, as there are processes that require a lot of processing time, like hard problems, that is the reason why there is a need to streamline these processes by developing a program to improve the performance of computer equipment, this could have greater impact on the execution time of these processes, specifically those computer programs used in production or services areas.
For this research in particular, we will use genetic algorithms, which were originally proposed by John Henry Holland in 1970 at the University of Michigan, later in 1998 Emanuel Falkenauer [5] used them to try to find a pattern in the method of adaptation for natural and artificial systems.
The technique of genetic algorithms is robust therefore can solve problems of many different areas, although genetic algorithms do not guarantee an optimal solution, they find solutions to quite acceptable levels, as the case of traveling salesman problem, the knapsack problem, the ant colony system, among others.

In this research we focused to solve the game of the towers of Hanoi, as this game involves a combination of moves for its solution provoking their level of difficulty to grow exponentially as you add disks to the game, which makes it perfect for this research.
Problem at hands

This research work aims to accelerate the execution time of Genetic Algorithms, using the processing power that we offer the GPUs and CUDA, to find an efficient solution by applying this technology to the problem of the towers of Hanoi in their different levels of difficulty.
Hypothesis: Parallel Genetic Algorithm Implementation on GPUs will improve processing time to solve Hanoi towers games

t = f(Nd)
(1)

Independent variable

Nd – Number of discs on the Hanoi towers game

Dependent variable
t- Execution time
Document Structure
This research is organized as follows: In section one are analyzed genetic algorithms (GA), their performance and applications. Later, in section two, we analyze Graphical Process Units (GPUs), their architecture and main differences regarding CPUs. In section 3, is discussed the Tim Jones sequential implementation [8] of C code to solve towers of Hanoi game using GAs, in this section is presented a brief analysis to implement a general solution to increment the number of discs. In section four, we analyze sequential functions, since the perspective of data parallelism, with the purpose to identify candidate functions to be parallelized in CUDA. In section five we present the experiment, and obtained results. Finally, we present our conclusions and further work.
1.1. Genetic Algorithms
According to [2] an algorithm is a finite computational process whose purpose is to perform a specific activity, on the other hand, the genetic algorithm is a search technique based on Charles Darwin's theory of evolution, this technique is based on the mechanisms of selection that uses the nature, according to which individuals more suitable for a population are those that survive and reproduce, the more easily adapted to the changes that occur in their environment.
A genetic algorithm is a mathematical function that takes as an input each individual in the population and returns as output which of them should generate offspring for the next generation.
[image: image1.emf]
Fig. 1. Flowchart of a continous GA [6]

Genetic algorithms require different methods for their operation such as: mutation that is responsible for mutating the genes of individuals; Crossover, which performs the reproduction of selected individuals; Fitness Function that is most important to these algorithms due on this is found the solution of the problem, and the method of selection which is responsible for picking up the fittest individuals to resolve the same.
Genetic algorithms and GPUs
In other hand, since the creation of computer equipment has sought to increase the processing speed, and as we know that genetic algorithms involve lengthy processes is to expedite its running time through Graphics Processing Units (GPU 's) .
Graphics Processing Units were created in the late 80's with the creation of Microsoft Windows that generated a huge popularity for visual environments. Years later, the company launched its GeForce Nvidia card which began the era of graphics acceleration [13]. Five years after the creation of the GeForce, it was achieved the parallel programming implementation via CUDA but still with many deficiencies.

GPUs, unlike CPUs that grow to four processing units, currently have multiple processors that can reach over 100 processing cores, significantly increasing mathematical calculation speed. Since GPUs have a mathematical processing power greater than CPUs makes them perfect for the implementation of genetic algorithms on the architecture. Currently, Genetic Algorithms are used in various tasks derived from its flexibility to solve problems [11].
GPUs Architecture
[image: image4.png]Define cost function, cost, variables
Select GA parameters

¥

Generate initial population

¥

Find cost for each chromosome

Convergence Check

done

Fig. 2. CUDA platform, CPU-GPU interaction [12].
In the figure above is described how interact CPU and GPU during the execution of a CUDA program , this is done by calling CUDA’s compiler nvcc, which is responsible for separating the code of the host (CPU) from GPUs code (device) . Each of these codes is handled by a compiler, for the case of a Host using a general-purpose compiler, this may vary depending on the platform where is working, for this research it was done on Windows, the recommended "C" compiler for CUDA is the Microsoft Visual Studio "cl" , otherwise the code is executed by CUDA nvcc on the device , the host reserves and moves the code to the device, once the device completes the appropriate data treatment proceeds to return data back to the host.
2 Methodology

Based on methodology proposed in [7], we consult literature to identify possible functions to be parallelized in the genetic algorithm, later, we analyze sequential implementation to solve Hanoi towers game using GA proposed in [8], to identify candidate functions to be parallelized, then we proceed to implement one of them using CUDA, we tested validity of solutions and made a comparison of processing time of sequential implementation versus processing time of parallelized implementation.

2.1 Identification of parallelizable process of genetic algorithms
Pedemonte, Alba and Luna [10] set some of the functions that are likely to be parallelized in the genetic algorithms, see figure 3.
[image: image2.png]cPy

generateRandomPopulation)

Loop

[

GPU

evaluatePopulation)

selectBinatyToumament()

crossoeverOperator()

mutationOperator()

evaluatePopulation()

Fig. 3. Identification of Parallelized processes for GA [10]
In the figure above is explained what methods of genetic algorithm are candidate for being parallelized, according to the proposed algorithm, the CPU is responsible for generating random population, which is subsequently moved the device (GPU) , followed by a kernel call to evaluate the population, later CPU generates random numbers and transfers them to the device (GPU), it is responsible for carrying out the rest of the AG, invokes kernels in charge of selection, crossover, mutation , and finally the fitness function (adaptive function) , once all these processes has been done , if the solution is found, returns to the CPU data to be displayed.

Considering above described, we proceed to analyze code for solving Towers of Hanoi Game using GA [8], several candidate functions were detected:

- Compute population fitness. Function that evaluates each individual verifying if it is the best solution for the problem.

void compute_population_fitness(int cur_pop)

{

 int i;

 double fitness;

 sum = 0.0;

 min = 999.0;

 max = 0.0;

 for (i = 0 ; i < POPULATION_SIZE ; i++) {

 fitness = compute_fitness(cur_pop, i, TRACE_OFF);

... }

double compute_fitness(int cur_pop, int member, int trace)

{

 int i, from, to, disc=NUM_DISC;

 int illegal_moves = 0;

 int move;

 double fitness;

 /* Initialize the pegs */

 for (i = 0 ; i < NUM_DISC ; i++) {//i<3

 pegs[0].peg[i] = disc--;

 pegs[1].peg[i] = 0;

 pegs[2].peg[i] = 0;

...

 }

Initialize population. This function is on charge of initializing the established population.

void initialize_population(int cur_pop)

{

 int i;

 for (i = 0 ; i < POPULATION_SIZE ; i++) {

 initialize_member(cur_pop, i);

 }

 return;

}

void initialize_member(int cur_pop, int member)

{

 int i;

 int half = (NUM_OPERATIONS >> 1);

 for (i = 0 ; i < NUM_OPERATIONS ; i++) {

 solutions[cur_pop][member].plan[i] = RANDMAX(MAX_OPERATIONS);

...

}
Crossover. This function is devoted to perform reproducing of previously selected parents.
int perform_ga(int cur_pop)

{

 int i, j, new_pop;

 int parent_1, parent_2;

 int crossover;

 new_pop = (cur_pop == 0) ? 1 : 0;

 for (i = 0 ; i < POPULATION_SIZE ; i+=2) {

parent_1 = select_parent(cur_pop);

 parent_2 = select_parent(cur_pop);

if (RANDOM() < CROSSOVER_PROB) {

 crossover = RANDMAX(

 MIN(solutions[cur_pop][parent_1].op_count,

 solutions[cur_pop][parent_2].op_count));

 } else {

 crossover = NUM_OPERATIONS;

 }

 for (j = 0 ; j < NUM_OPERATIONS ; j++) {

...

}
Based on the work of [10] was determined that the functions that have repetitive nested "for" structures, are likely to be parallelized in CUDA.
Types of parallel programming

Different types of parallel programming exist, among which we find:
- Simple Program Multiple Data (SPMD). Proper for repetitive flow structures (i.e.: for, while).
- Multiple Program Multiple Data (MPMD). Multiple tasks can be parallelized.
[image: image3.png]task 1 task 2 task n

Fig. 4. Parallelism based on data
CUDA uses SPMD or simply data based parallelism, also known as Partitioned Global Address Space (PGAS). This parallel programming technique was applied in the program [10]. As explained in [1], most parallel programs seek operations from some data structure: vector, matrix, cube, etc. This is done by control structures, though not necessarily work in an orderly manner, and which is known shared memory structures, such as GPU's, that allow access to these structures using pointers and global memory.

3.5 Application of parallelization to the problem of the towers of Hanoi
After solving the problem of increasing number of disks, migration of sequentially structured code to parallel code began, it means change to sentences understandable by the CUDA compiler "nvcc". From the detected functions that are likely to be parallelized, was chosen the "Initialize_population" function because of the three detected is the most "simple" to parallelize.
The proposed function is divided in two: the "Initialize_population" function that calls the "Initialize_member" function according to the population size, then the "Initialize_member" function is responsible for verifying each individual in the current population, assigning the " plan ", subsequently assigning a random value to the "op_count" variable per individual, and finally initializes the fitness value of each individual to zero. After analyzing these functions having "for" loops nested, it was decided to merge them leaving as a single function that initializes each member of the current population, once merged this function, were applied the instructions to transfer the necessary variables to methods to be executed on device (GPU). Below are shown the above functions merged, and later this resulting function parallelized already.
Fused Initialize member Sequential Funtions for GA [8]
void initialize_population(int cur_pop)

{ int i; int j;

 int half = (NUM_OPERATIONS >> 1);

 for (i = 0 ; i < POPULATION_SIZE ; i++) {

 for (j = 0 ; j < NUM_OPERATIONS ; j++) {

 solutions[cur_pop][i].plan[j] = RANDMAX(MAX_OPERATIONS);

 }

 solutions[cur_pop][i].op_count = half + RANDMAX(half);

 solutions[cur_pop][i].fitness = 0.0

 }

 return;

}

In the above code is shown how were merged the two methods, then proceeded to the creation of the kernel and its call from the main function, the compilation was performed with the nvcc compiler. Note that it was necessary to find a way to generate random numbers in the device; this was achieved with the library CUDARAND.

Parallelized function in CUDA
__global__ void kernel_initialize_population(solution_t *psolutions, curandState* globalState, int n){

 int half = (NUM_OPERATIONS >> 1);

 int i;

 int index = threadIdx.x;

 curandState localState = globalState[index];

 float RANDOM = curand_uniform(&localState);

 globalState[index] = localState;

 for (i = 0 ; i < NUM_OPERATIONS ; i++) {

psolutions[index].plan[i] = (RANDOM * RAND_MAX * MAX_OPERATIONS /(RAND_MAX + 1.0));

 }

 float RANDOM1 = curand_uniform(&localState);

psolutions[index].op_count = half + (RANDOM1 * RAND_MAX * half /(RAND_MAX + 1.0));

 psolutions[index].fitness = 0.0;

}

The above code shows the implementation of the kernel in charge of mean population initialization in the device (GPU), this takes three variables: two pointers "psolutions" and "curandState" and an integer "n", later three variables are created , "half " which will equal the value of "NUM_OPERATIONS" shifted one bit, "i" will be used to control the "FOR" loop, and index will be equal to the thread identifier of the block.
Then a variable "localstate" of curandState type is created, this will get the value of the variable received by the kernel "globalState" in its "index" position, followed by the creation of a floating type variable called RANDOM, it will get its value of curand_uniform function, which produces a normalized random integer. Continuing the execution of the program, globalState array in its index position get its value from localState; in the following statement execution of GA proceeds, where For loop will assign each member of the population a random plan by means of RANDOM variable, later another variable called RANDOM1 is created, which assigns to each member of the current population a random value op_count. Finally, sets the fitness value of each individual to zero.

3 Experiment

Sequential and parallel programs were executed ten times, taking two readings, the first one measures the initialization time and the second execution times for complete algorithm. Was executed sequential and parallel version programs for three discs and a maximum number of operations 30, and then adjusted test programs for four disks with a maximum of 50 operations. Below are shown the results obtained. Workstation has 32 Gbytes RAM, three Tesla 2075 cards, CUDA 5.0 (NVIDIA, 2011) and Ubuntu 12.10 Operating System.
4 Results and discussion
	
	Discs =3, Num_op=30
	Discs=4, Numop=50

	Run
	t Sequential
	t Parallel
	t Sequential
	t Parallel

	1
	1.86
	2.11
	27.49
	1.93

	2
	6.86
	1.98
	0.56
	3.52

	3
	3.5
	1.62
	10.9
	1.07

	4
	1.53
	1.57
	6.02
	3.1

	5
	0.72
	0.62
	18.51
	23.57

	6
	1.72
	2.79
	11.2
	7.72

	7
	2.29
	3.22
	19.78
	18.95

	8
	1.3
	0.58
	32.88
	14.35

	9
	0.54
	0.42
	17.71
	4.36

	10
	1.66
	1.1
	1.28
	6.96

	Mean
	2.198
	1.601
	14.633
	8.553

	
	
	
	
	

	Factor
	
	 0.27
	
	 0.42

In the first experiment yielded a 27% improvement in the performance of the parallel version with respect to the sequential implementation. In the second experiment, is obtained a 42% improvement in the performance of the experiment. The results agree with reported in [12] and [3], in the sense that the higher the amount of calculation the best performance on GPUs. These results are promising since they pertain only to the initialization function.
5 Conclusions and future work
The hypothesis is true. GPU can reduce processing time for solving the Towers of Hanoi game. In any way this work is complete, is intended to parallelize all identified functions in algorithm analyzed, and then verify the order of magnitude of the improvement for the solution.
References
1. Ok Carriero, N., & Gelernter, D. (1990). How to write parallel programs (Vol. 30). Cambridge: MIT press.

2. Coello C. A. (1995). Introducción a los Algoritmos Genéticos, (year 3, No. 17), pp. 5-11.
3. Debattisti S.; Marlat N.; Mussi L. & Cagnoni S. (2009). Implementation of a Simple Genetic Algorithm within the CUDA Architecture (1st Ed.) Parma, Italy, Università degli Studi di Parma.

4. Floreano, D. and Matussi, C. (2008). Bio-inspired Artificial Intelligence. Theories, Methods, and Technologies. The MIT Press. MA, USA.
5. Falkenauer, E. (1998). Genetic Algorithms and Grouping Problems, (1st Ed) John Wiley & Sons, Heslington, York.

6. Haupt, R. L. & Haupt, S. E. (2004). Practical Genetic Algorithms (2a ed.). Hoboken, New Jersey.: John Wiley & Sons, Inc.,
7. Hernández-Aguilar, J.A.; Zavala, J.C.; and Vakhnia, N. (2011). Explotación de las Capacidades de Procesamiento en Paralelo de Computadoras Multiprocesador y de las Unidades Gráficas de Procesamiento “GPUs” mediante PythonOpenCL en ambientes Linux in Construcción de Soluciones a Problemas de Administración de Operaciones e Informática Administrativa. Vol. 1(1) pp. 25-39, CA INVOP, pp. 25-39.

8. Jones, T. (2009). Artificial Intelligence. A Systems Approach. Jones and Bartlett Publishers, LLC. MA, USA.
9. NVIDIA (2011). Parallel Programing and computing platform. In (http://www.nvidia.com/object/cuda_home_new.html
10. Pedemonte, M., Alba, E., & Luna, F. (2011). Bitwise operations for gpu implementation of genetic algorithms. In Proceedings of the 13th annual conference companion on Genetic and evolutionary computation (pp. 439-446). ACM.

11. Rodríguez-Piñero, P. T. (2003). Introducción a los algoritmos genéticos y sus aplicaciones. Universidad Rey Juan Carlos, Servicio de Publicaciones.

12. Pospichal, P., Jaros, J. and Schwarz, J. (2010). Parallel Genetic Algorithm on the CUDA Architecture. C. Di Chio et al. (Eds.): EvoApplications 2010, Part I, LNCS 6024, pp. 442–451.
13. Sanders, A. & Kandrot E. (2011), CUDA by Example (1st Ed), Arbor, Michigan, Edwards Brothers

HYPERLINK "http://www.google.com.mx/url?sa=t&rct=j&q=edwards%20brothers&source=web&cd=1&ved=0CCIQFjAA&url=http%3A%2F%2Fwww.edwardsbrothers.com%2F&ei=Iq3mTt6ZGe6FsgL4u9DTCA&usg=AFQjCNGMe3a3fc2hEDqcfa-SusR-oW1TnA&cad=rja" \h, Inc.
adfa, p. 1, 2011.

© Springer-Verlag Berlin Heidelberg 2011

